1,412 research outputs found

    On the metric dimension of rotationally-symmetric convex polytopes

    Get PDF
    Metric dimension is a~generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let F\mathcal{F} be a family of connected graphs GnG_{n} : F=(Gn)n1\mathcal{F} = (G_{n})_{n}\geq 1 depending on nn as follows: the order V(G)=φ(n)|V(G)| = \varphi(n) and limnφ(n)=\lim\limits_{n\rightarrow \infty}\varphi(n)=\infty. If there exists a constant C > 0 such that dim(Gn)Cdim(G_{n}) \leq C for every n1n \geq 1 then we shall say that F\mathcal{F} has bounded metric dimension, otherwise F\mathcal{F} has unbounded metric dimension. If all graphs in F\mathcal{F} have the same metric dimension, then F\mathcal{F} is called a family of graphs with constant metric dimension.\\ In this paper, we study the metric dimension of some classes of convex polytopes which are rotationally-symmetric. It is shown that these classes of convex polytoes have the constant metric dimension and only three vertices chosen appropriately suffice to resolve all the vertices of these classes of convex polytopes. It is natural to ask for the characterization of classes of convex polytopes with constant metric dimension

    Height estimates for Killing graphs

    Get PDF
    The paper aims at proving global height estimates for Killing graphs defined over a complete manifold with nonempty boundary. To this end, we first point out how the geometric analysis on a Killing graph is naturally related to a weighted manifold structure, where the weight is defined in terms of the length of the Killing vector field. According to this viewpoint, we introduce some potential theory on weighted manifolds with boundary and we prove a weighted volume estimate for intrinsic balls on the Killing graph. Finally, using these tools, we provide the desired estimate for the weighted height in the assumption that the Killing graph has constant weighted mean curvature and the weighted geometry of the ambient space is suitably controlled.Comment: 26 pages. Final version. To appear on Journal of Geometric Analysi
    corecore