280,927 research outputs found

    On the Distributed Complexity of Large-Scale Graph Computations

    Full text link
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k2k \geq 2 machines jointly perform computations on graphs with nn nodes (typically, nkn \gg k). The input graph is assumed to be initially randomly partitioned among the kk machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication {\em rounds} of the computation. Our main contribution is the {\em General Lower Bound Theorem}, a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. The General Lower Bound Theorem is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic and this theorem can be used in a "cookbook" fashion to show distributed lower bounds in the context of several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds for the round complexity of two fundamental graph problems, namely {\em PageRank computation} and {\em triangle enumeration}. Our approach, as demonstrated in the case of PageRank, can yield tight lower bounds for problems (including, and especially, under a stochastic partition of the input) where communication complexity techniques are not obvious. Our approach, as demonstrated in the case of triangle enumeration, can yield stronger round lower bounds as well as message-round tradeoffs compared to approaches that use communication complexity techniques

    Round- and Message-Optimal Distributed Graph Algorithms

    Full text link
    Distributed graph algorithms that separately optimize for either the number of rounds used or the total number of messages sent have been studied extensively. However, algorithms simultaneously efficient with respect to both measures have been elusive. For example, only very recently was it shown that for Minimum Spanning Tree (MST), an optimal message and round complexity is achievable (up to polylog terms) by a single algorithm in the CONGEST model of communication. In this paper we provide algorithms that are simultaneously round- and message-optimal for a number of well-studied distributed optimization problems. Our main result is such a distributed algorithm for the fundamental primitive of computing simple functions over each part of a graph partition. From this algorithm we derive round- and message-optimal algorithms for multiple problems, including MST, Approximate Min-Cut and Approximate Single Source Shortest Paths, among others. On general graphs all of our algorithms achieve worst-case optimal O~(D+n)\tilde{O}(D+\sqrt n) round complexity and O~(m)\tilde{O}(m) message complexity. Furthermore, our algorithms require an optimal O~(D)\tilde{O}(D) rounds and O~(n)\tilde{O}(n) messages on planar, genus-bounded, treewidth-bounded and pathwidth-bounded graphs.Comment: To appear in PODC 201

    Deterministic Logarithmic Completeness in the Distributed Sleeping Model

    Get PDF
    In this paper we provide a deterministic scheme for solving any decidable problem in the distributed sleeping model. The sleeping model [Valerie King et al., 2011; Soumyottam Chatterjee et al., 2020] is a generalization of the standard message-passing model, with an additional capability of network nodes to enter a sleeping state occasionally. As long as a vertex is in the awake state, it is similar to the standard message-passing setting. However, when a vertex is asleep it cannot receive or send messages in the network nor can it perform internal computations. On the other hand, sleeping rounds do not count towards awake complexity. Awake complexity is the main complexity measurement in this setting, which is the number of awake rounds a vertex spends during an execution. In this paper we devise algorithms with worst-case guarantees on the awake complexity. We devise a deterministic scheme with awake complexity of O(log n) for solving any decidable problem in this model by constructing a structure we call Distributed Layered Tree. This structure turns out to be very powerful in the sleeping model, since it allows one to collect the entire graph information within a constant number of awake rounds. Moreover, we prove that our general technique cannot be improved in this model, by showing that the construction of distributed layered trees itself requires ?(log n) awake rounds. This is obtained by a reduction from message-complexity lower bounds, which is of independent interest. Furthermore, our scheme also works in the CONGEST setting where we are limited to messages of size at most O(log n) bits. This result is shown for a certain class of problems, which contains problems of great interest in the research of the distributed setting. Examples for problems we can solve under this limitation are leader election, computing exact number of edges and average degree. Another result we obtain in this work is a deterministic scheme for solving any problem from a class of problems, denoted O-LOCAL, in O(log ? + log^*n) awake rounds. This class contains various well-studied problems, such as MIS and (?+1)-vertex-coloring. Our main structure in this case is a tree as well, but is sharply different from a distributed layered tree. In particular, it is constructed in the local memory of each processor, rather than distributively. Nevertheless, it provides an efficient synchronization scheme for problems of the O-LOCAL class

    On The Communication Complexity of Linear Algebraic Problems in the Message Passing Model

    Full text link
    We study the communication complexity of linear algebraic problems over finite fields in the multi-player message passing model, proving a number of tight lower bounds. Specifically, for a matrix which is distributed among a number of players, we consider the problem of determining its rank, of computing entries in its inverse, and of solving linear equations. We also consider related problems such as computing the generalized inner product of vectors held on different servers. We give a general framework for reducing these multi-player problems to their two-player counterparts, showing that the randomized ss-player communication complexity of these problems is at least ss times the randomized two-player communication complexity. Provided the problem has a certain amount of algebraic symmetry, which we formally define, we can show the hardest input distribution is a symmetric distribution, and therefore apply a recent multi-player lower bound technique of Phillips et al. Further, we give new two-player lower bounds for a number of these problems. In particular, our optimal lower bound for the two-player version of the matrix rank problem resolves an open question of Sun and Wang. A common feature of our lower bounds is that they apply even to the special "threshold promise" versions of these problems, wherein the underlying quantity, e.g., rank, is promised to be one of just two values, one on each side of some critical threshold. These kinds of promise problems are commonplace in the literature on data streaming as sources of hardness for reductions giving space lower bounds

    Performance driven distributed scheduling of parallel hybrid computations

    Get PDF
    AbstractExascale computing is fast becoming a mainstream research area. In order to realize exascale performance, it is necessary to have efficient scheduling of large parallel computations with scalable performance on a large number of cores/processors. The scheduler needs to execute in a pure distributed and online fashion, should follow affinity inherent in the computation and must have low time and message complexity. Further, it should also avoid physical deadlocks due to bounded resources including space/memory per core. Simultaneous consideration of these factors makes affinity driven distributed scheduling particularly challenging. We attempt to address this challenge for hybrid parallel computations which contain tasks that have pre-specified affinity to a place and also tasks that can be mapped to any place in the system. Specifically, we address two scheduling problems of the type Pm|Mj,prec|Cmax. This paper presents online distributed scheduling algorithms for hybrid parallel computations assuming both unconstrained and bounded space per place. We also present the time and message complexity for distributed scheduling of hybrid computations. To the best of our knowledge, this is the first time that distributed scheduling algorithms for hybrid parallel computations have been presented and analyzed for time and message bounds under both unconstrained space and bounded space

    Distributed Computation of Large-scale Graph Problems

    Full text link
    Motivated by the increasing need for fast distributed processing of large-scale graphs such as the Web graph and various social networks, we study a message-passing distributed computing model for graph processing and present lower bounds and algorithms for several graph problems. This work is inspired by recent large-scale graph processing systems (e.g., Pregel and Giraph) which are designed based on the message-passing model of distributed computing. Our model consists of a point-to-point communication network of kk machines interconnected by bandwidth-restricted links. Communicating data between the machines is the costly operation (as opposed to local computation). The network is used to process an arbitrary nn-node input graph (typically nk>1n \gg k > 1) that is randomly partitioned among the kk machines (a common implementation in many real world systems). Our goal is to study fundamental complexity bounds for solving graph problems in this model. We present techniques for obtaining lower bounds on the distributed time complexity. Our lower bounds develop and use new bounds in random-partition communication complexity. We first show a lower bound of Ω(n/k)\Omega(n/k) rounds for computing a spanning tree (ST) of the input graph. This result also implies the same bound for other fundamental problems such as computing a minimum spanning tree (MST). We also show an Ω(n/k2)\Omega(n/k^2) lower bound for connectivity, ST verification and other related problems. We give algorithms for various fundamental graph problems in our model. We show that problems such as PageRank, MST, connectivity, and graph covering can be solved in O~(n/k)\tilde{O}(n/k) time, whereas for shortest paths, we present algorithms that run in O~(n/k)\tilde{O}(n/\sqrt{k}) time (for (1+ϵ)(1+\epsilon)-factor approx.) and in O~(n/k)\tilde{O}(n/k) time (for O(logn)O(\log n)-factor approx.) respectively.Comment: In Proceedings of SODA 201

    Parallel and Distributed Algorithms for a Class of Graph-Related Computational Problems.

    Get PDF
    There exist at least two models of parallel computing, namely, shared-memory and message-passing. This research addresses problems in both these types of systems, and proposes efficient parallel (Shared-Memory Model) and distributed (message-passing) algorithms for a variety of graph related computational problems. In part I, we design algorithms for three generic problems in distributed systems: set manipulation, network structure recognition and facility placement. We present optimal distributed algorithms for recognizing rectangular-mesh networks. The time and message complexity of our algorithm is linear in the number of nodes in the network. We also lay the foundation for the recognition of 2-reducible, outer-planar and cactus graphs. These algorithms have a message complexity of O(kn), where, k is the number of isolated two degree nodes in the network. We introduce the problem of reliable r-domination and design unified optimal distributed algorithms for the total, reliable and independent r-domination on trees. The time and message complexity of our algorithm is O(n), where n is the number of nodes in the tree. In the domain of set manipulation we design optimal algorithms for determining the intersection of sets in a distributed environment, where each processor is assumed to have its own set. The time and message complexity of our set intersection algorithm is O(mn), where m is the cardinality of the smallest set. In part II of our research we design optimal algorithms for r-domination and efficient parallel algorithms for the p-center problems on trees. We also present an optimal algorithm for computing the maximum independent set on intervals i the EREW-PRAM model. The r-domination problem on trees can now be solved in O(logn)time with O(n/logn) processors using the EREW-PRAM model. A parallel algorithm for range searching is developed using the concept of distributed data structures. We show that O(logn) search time can be effected for a range search on n 3-dimensional points using (2.log\sp2n-14.logn + 8) processors. Our algorithm can easily be generalized for the case of d-dimensional range search. (Abstract shortened with permission of author.)

    Time-Message Trade-Offs in Distributed Algorithms

    Get PDF
    This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors - the so-called KT_1 model - a well-studied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph - called a danner - that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is a distributed randomized algorithm that, given a graph G and any delta in [0,1], with high probability constructs a danner that has diameter O~(D + n^{1-delta}) and O~(min{m,n^{1+delta}}) edges in O~(n^{1-delta}) rounds while using O~(min{m,n^{1+delta}}) messages, where n, m, and D are the number of nodes, edges, and the diameter of G, respectively. Using our danner construction, we present a family of distributed randomized algorithms for various fundamental problems that exhibit a trade-off between message and time complexity and that improve over previous results. Specifically, we show the following results (all hold with high probability) in the KT_1 model, which subsume and improve over prior bounds in the KT_1 model (King et al., PODC 2014 and Awerbuch et al., JACM 1990) and the KT_0 model (Kutten et al., JACM 2015, Pandurangan et al., STOC 2017 and Elkin, PODC 2017): 1) Leader Election, Broadcast, and ST. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,1]. 2) MST and Connectivity. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. In particular, for delta = 0.5 we obtain a distributed MST algorithm that runs in optimal O~(D+sqrt{n}) rounds and uses O~(min{m,n^{3/2}}) messages. We note that this improves over the singularly optimal algorithm in the KT_0 model that uses O~(D+sqrt{n}) rounds and O~(m) messages. 3) Minimum Cut. O(log n)-approximate minimum cut can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 4) Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]
    corecore