344 research outputs found

    Multi-resource management in embedded real-time systems

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    Non-Preemptive Scheduling of Periodic Mixed-Criticality Real-Time Systems

    Get PDF
    In this work we develop an offline analysis of periodic mixed-criticality real-time systems. We develop a graph-based exploratory method to non-preemptively schedule multiple criticality tasks. The exploration process obtains a schedule for each periodic instance of the tasks. The schedule adjusts for criticality mode changes to maximize the resource usage by allowing lower criticality executions. At the same time, it ensures that the schedulability of other higher criticality jobs is never compromised. We also quantify the probabilities associated to a criticality mode change by using task probabilistic Worst Case Execution Times. A method to reduce the offline complexity is also proposed.info:eu-repo/semantics/publishedVersio

    Using Imprecise Computing for Improved Real-Time Scheduling

    Get PDF
    Conventional hard real-time scheduling is often overly pessimistic due to the worst case execution time estimation. The pessimism can be mitigated by exploiting imprecise computing in applications where occasional small errors are acceptable. This leverage is investigated in a few previous works, which are restricted to preemptive cases. We study how to make use of imprecise computing in uniprocessor non-preemptive real-time scheduling, which is known to be more difficult than its preemptive counterpart. Several heuristic algorithms are developed for periodic tasks with independent or cumulative errors due to imprecision. Simulation results show that the proposed techniques can significantly improve task schedulability and achieve desired accuracy– schedulability tradeoff. The benefit of considering imprecise computing is further confirmed by a prototyping implementation in Linux system. Mixed-criticality system is a popular model for reducing pessimism in real-time scheduling while providing guarantee for critical tasks in presence of unexpected overrun. However, it is controversial due to some drawbacks. First, all low-criticality tasks are dropped in high-criticality mode, although they are still needed. Second, a single high-criticality job overrun leads to the pessimistic high-criticality mode for all high-criticality tasks and consequently resource utilization becomes inefficient. We attempt to tackle aforementioned two limitations of mixed-criticality system simultaneously in multiprocessor scheduling, while those two issues are mostly focused on uniprocessor scheduling in several recent works. We study how to achieve graceful degradation of low-criticality tasks by continuing their executions with imprecise computing or even precise computing if there is sufficient utilization slack. Schedulability conditions under this Variable-Precision Mixed-Criticality (VPMC) system model are investigated for partitioned scheduling and global fpEDF-VD scheduling. And a deferred switching protocol is introduced so that the chance of switching to high-criticality mode is significantly reduced. Moreover, we develop a precision optimization approach that maximizes precise computing of low-criticality tasks through 0-1 knapsack formulation. Experiments are performed through both software simulations and Linux proto- typing with consideration of overhead. Schedulability of the proposed methods is studied so that the Quality-of-Service for low-criticality tasks is improved with guarantee of satisfying all deadline constraints. The proposed precision optimization can largely reduce computing errors compared to constantly executing low-criticality tasks with imprecise computing in high-criticality mode

    A Lazy Bailout Approach for Dual-Criticality Systems on Uniprocessor Platforms

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland.A challenge in the design of cyber-physical systems is to integrate the scheduling of tasks of different criticality, while still providing service guarantees for the higher critical tasks in case of resource-shortages caused by faults. While standard real-time scheduling is agnostic to the criticality of tasks, the scheduling of tasks with different criticalities is called mixed-criticality scheduling. In this paper we present the Lazy Bailout Protocol (LBP), a mixed-criticality scheduling method where low-criticality jobs overrunning their time budget cannot threaten the timeliness of high-criticality jobs while at the same time the method tries to complete as many low-criticality jobs as possible. The key principle of LBP is instead of immediately abandoning low-criticality jobs when a high-criticality job overruns its optimistic WCET estimate, to put them in a low-priority queue for later execution. To compare mixed-criticality scheduling methods we introduce a formal quality criterion for mixed-criticality scheduling, which, above all else, compares schedulability of high-criticality jobs and only afterwards the schedulability of low-criticality jobs. Based on this criterion we prove that LBP behaves better than the original {\em Bailout Protocol} (BP). We show that LBP can be further improved by slack time exploitation and by gain time collection at runtime, resulting in LBPSG. We also show that these improvements of LBP perform better than the analogous improvements based on BP.Peer reviewedFinal Published versio
    • …
    corecore