39 research outputs found

    Computing the smallest fixed point of order-preserving nonexpansive mappings arising in positive stochastic games and static analysis of programs

    Full text link
    The problem of computing the smallest fixed point of an order-preserving map arises in the study of zero-sum positive stochastic games. It also arises in static analysis of programs by abstract interpretation. In this context, the discount rate may be negative. We characterize the minimality of a fixed point in terms of the nonlinear spectral radius of a certain semidifferential. We apply this characterization to design a policy iteration algorithm, which applies to the case of finite state and action spaces. The algorithm returns a locally minimal fixed point, which turns out to be globally minimal when the discount rate is nonnegative.Comment: 26 pages, 3 figures. We add new results, improvements and two examples of positive stochastic games. Note that an initial version of the paper has appeared in the proceedings of the Eighteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), Blacksburg, Virginia, July 200

    Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity

    Full text link
    We propose a new concept of generalized differentiation of set-valued maps that captures the first order information. This concept encompasses the standard notions of Frechet differentiability, strict differentiability, calmness and Lipschitz continuity in single-valued maps, and the Aubin property and Lipschitz continuity in set-valued maps. We present calculus rules, sharpen the relationship between the Aubin property and coderivatives, and study how metric regularity and open covering can be refined to have a directional property similar to our concept of generalized differentiation. Finally, we discuss the relationship between the robust form of generalization differentiation and its one sided counterpart.Comment: This submission corrects errors from the previous version after referees' comments. Changes are in Proposition 2.4, Proposition 4.12, and Sections 7 and

    Complete Characterizations of Local Weak Sharp Minima With Applications to Semi-Infinite Optimization and Complementarity

    Get PDF
    In this paper we identify a favorable class of nonsmooth functions for which local weak sharp minima can be completely characterized in terms of normal cones and subdifferentials, or tangent cones and subderivatives, or their mixture in finite-dimensional spaces. The results obtained not only significantly extend previous ones in the literature, but also allow us to provide new types of criteria for local weak sharpness. Applications of the developed theory are given to semi-infinite programming and to semi-infinite complementarity problems

    A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization

    Full text link
    We propose a novel trust region method for solving a class of nonsmooth and nonconvex composite-type optimization problems. The approach embeds inexact semismooth Newton steps for finding zeros of a normal map-based stationarity measure for the problem in a trust region framework. Based on a new merit function and acceptance mechanism, global convergence and transition to fast local q-superlinear convergence are established under standard conditions. In addition, we verify that the proposed trust region globalization is compatible with the Kurdyka-{\L}ojasiewicz (KL) inequality yielding finer convergence results. We further derive new normal map-based representations of the associated second-order optimality conditions that have direct connections to the local assumptions required for fast convergence. Finally, we study the behavior of our algorithm when the Hessian matrix of the smooth part of the objective function is approximated by BFGS updates. We successfully link the KL theory, properties of the BFGS approximations, and a Dennis-Mor{\'e}-type condition to show superlinear convergence of the quasi-Newton version of our method. Numerical experiments on sparse logistic regression and image compression illustrate the efficiency of the proposed algorithm.Comment: 56 page
    corecore