2,382 research outputs found

    Systems-Based Design of Bi-Ligand Inhibitors of Oxidoreductases: Filling the Chemical Proteomic Toolbox

    Get PDF
    Genomics-driven growth in the number of enzymes of unknown function has created a need for better strategies to characterize them. Since enzyme inhibitors have traditionally served this purpose, we present here an efficient systems-based inhibitor design strategy, enabled by bioinformatic and NMR structural developments. First, we parse the oxidoreductase gene family into structural subfamilies termed pharmacofamilies, which share pharmacophore features in their cofactor binding sites. Then we identify a ligand for this site and use NMR-based binding site mapping (NMR SOLVE) to determine where to extend a combinatorial library, such that diversity elements are directed into the adjacent substrate site. The cofactor mimic is reused in the library in a manner that parallels the reuse of cofactor domains in the oxidoreductase gene family. A library designed in this manner yielded specific inhibitors for multiple oxidoreductases

    Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea)

    Get PDF
    Complete mitochondrial genomes have been shown to be reliable markers for phylogeny reconstruction among diverse animal groups. However, the relative difficulty and high cost associated with obtaining de novo full mitogenomes have frequently led to conspicuously low taxon sampling in ensuing studies. Here, we report the successful use of an economical and accessible method for assembling complete or near-complete mitogenomes through shot-gun next-generation sequencing of a single library made from pooled total DNA extracts of numerous target species. To avoid the use of separate indexed libraries for each specimen, and an associated increase in cost, we incorporate standard polymerase chain reaction-based “bait” sequences to identify the assembled mitogenomes. The method was applied to study the higher level phylogenetic relationships in the weevils (Coleoptera: Curculionoidea), producing 92 newly assembled mitogenomes obtained in a single Illumina MiSeq run. The analysis supported a separate origin of wood-boring behavior by the subfamilies Scolytinae, Platypodinae, and Cossoninae. This finding contradicts morphological hypotheses proposing a close relationship between the first two of these but is congruent with previous molecular studies, reinforcing the utility of mitogenomes in phylogeny reconstruction. Our methodology provides a technically simple procedure for generating densely sampled trees from whole mitogenomes and is widely applicable to groups of animals for which bait sequences are the only required prior genome knowledge

    Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton

    Get PDF
    Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening

    A Malvaceae mystery: A mallow maelstrom of genome multiplications and maybe misleading methods?

    Get PDF
    Previous research suggests that Gossypium has undergone a 5- to 6-fold multiplication following its divergence from Theobroma. However, the number of events, or where they occurred in the Malvaceae phylogeny remains unknown. We analyzed transcriptomic and genomic data from representatives of eight of the nine Malvaceae subfamilies. Phylogenetic analysis of nuclear data placed Dombeya (Dombeyoideae) as sister to the rest of Malvadendrina clade, but the plastid DNA tree strongly supported Durio (Helicteroideae) in this position. Intraspecific Ks plots indicated that all sampled taxa, except Theobroma (Byttnerioideae), Corchorus (Grewioideae), and Dombeya (Dombeyoideae), have experienced whole genome multiplications (WGMs). Quartet analysis suggested WGMs were shared by Malvoideae-Bombacoideae and Sterculioideae-Tilioideae, but did not resolve whether these are shared with each other or Helicteroideae (Durio). Gene tree reconciliation and Bayesian concordance analysis suggested a complex history. Alternative hypotheses are suggested, each involving two independent autotetraploid and one allopolyploid event. They differ in that one entails an allopolyploid origin for the Durio lineage, whereas the other invokes an allopolyploid origin for Malvoideae-Bombacoideae. We highlight the need for more genomic information in the Malvaceae and improved methods to resolve complex evolutionary histories that may include allopolyploidy, incomplete lineage sorting, and variable rates of gene and genome evolution

    Analysis of lineage-specific Alu subfamilies in the genome of the olive baboon, Papio anubis

    Get PDF
    © 2018 The Author(s). Background: Alu elements are primate-specific retroposons that mobilize using the enzymatic machinery of L1 s. The recently completed baboon genome project found that the mobilization rate of Alu elements is higher than in the genome of any other primate studied thus far. However, the Alu subfamily structure present in and specific to baboons had not been examined yet. Results: Here we report 129 Alu subfamilies that are propagating in the genome of the olive baboon, with 127 of these subfamilies being new and specific to the baboon lineage. We analyzed 233 Alu insertions in the genome of the olive baboon using locus specific polymerase chain reaction assays, covering 113 of the 129 subfamilies. The allele frequency data from these insertions show that none of the nine groups of subfamilies are nearing fixation in the lineage. Conclusions: Many subfamilies of Alu elements are actively mobilizing throughout the baboon lineage, with most being specific to the baboon lineage

    Elastic Network Models in Biology: From Protein Mode Spectra to Chromatin Dynamics

    Get PDF
    Biomacromolecules perform their functions by accessing conformations energetically favored by their structure-encoded equilibrium dynamics. Elastic network model (ENM) analysis has been widely used to decompose the equilibrium dynamics of a given molecule into a spectrum of modes of motions, which separates robust, global motions from local fluctuations. The scalability and flexibility of the ENMs permit us to efficiently analyze the spectral dynamics of large systems or perform comparative analysis for large datasets of structures. I showed in this thesis how ENMs can be adapted (1) to analyze protein superfamilies that share similar tertiary structures but may differ in their sequence and functional dynamics, and (2) to analyze chromatin dynamics using contact data from Hi-C experiments, and (3) to perform a comparative analysis of genome topology across different types of cell lines. The first study showed that protein family members share conserved, highly cooperative (global) modes of motion. A low-to-intermediate frequency spectral regime was shown to have a maximal impact on the functional differentiation of families into subfamilies. The second study demonstrated the Gaussian Network Model (GNM) can accurately model chromosomal mobility and couplings between genomic loci at multiple scales: it can quantify the spatial fluctuations in the positions of gene loci, detect large genomic compartments and smaller topologically-associating domains (TADs) that undergo en bloc movements, and identify dynamically coupled distal regions along the chromosomes. The third study revealed close similarities between chromosomal dynamics across different cell lines on a global scale, but notable cell-specific variations in the spatial fluctuations of genomic loci. It also called attention to the role of the intrinsic spatial dynamics of chromatin as a determinant of cell differentiation. Together, these studies provide a comprehensive view of the versatility and utility of the ENMs in analyzing spatial dynamics of biomolecules, from individual proteins to the entire chromatin

    POLYA: A TOOL FOR ADJUDICATING COMPETING ANNOTATIONS OF BIOLOGICAL SEQUENCES

    Get PDF
    Annotation of a biological sequence is usually performed by aligning that sequence to a database of known sequence elements. When that database contains elements that are highly similar to each other, the proper annotation may be ambiguous, because several entries in the database produce high-scoring alignments. Typical annotation methods work by assigning a label based on the candidate annotation with the highest alignment score; this can overstate annotation certainty, mislabel boundaries, and fails to identify large scale rearrangements or insertions within the annotated sequence. Here, I present a new software tool, PolyA, that adjudicates between competing alignment-based annotations by computing estimates of annotation confidence, identifying a trace with maximal confidence, and recursively splicing/stitching inserted elements. PolyA communicates annotation certainty, identifies large scale rearrangements, and detects boundaries between neighboring elements

    The Economics of Aging

    Get PDF
    • …
    corecore