516 research outputs found

    Latin Squares and Their Applications to Cryptography

    Get PDF
    A latin square of order-n is an n x n array over a set of n symbols such that every symbol appears exactly once in each row and exactly once in each column. Latin squares encode features of algebraic structures. When an algebraic structure passes certain latin square tests , it is a candidate for use in the construction of cryptographic systems. A transversal of a latin square is a list of n distinct symbols, one from each row and each column. The question regarding the existence of transversals in latin squares that encode the Cayley tables of finite groups is far from being resolved and is an area of active investigation. It is known that counting the pairs of permutations over a Galois field ��pd whose point-wise sum is also a permutation is equivalent to counting the transversals of a latin square that encodes the addition group of ��pd. We survey some recent results and conjectures pertaining to latin squares and transversals. We create software tools that generate latin squares and count their transversals. We confirm previous results that cyclic latin squares of prime order-p possess the maximum transversal counts for 3 ≤ p ≤ 9. Furthermore, we create a new algorithm that uses these prime order-p cyclic latin squares as building blocks to construct super-symmetric latin squares of prime power order-pd with d \u3e 0; using this algorithm we accurately predict that super-symmetric latin squares of order-pd possess the confirmed maximum transversal counts for 3 ≤ pd ≤ 9 and the estimated lower bound on the maximum transversal counts for 9 \u3c pd ≤ 17. Also, we give some conjectures regarding the number of transversals in a super-symmetric latin square. Lastly, we use the super-symmetric latin square for the additive group of the Galois field (��32, +) to create a simplified version of Grøstl, an iterated hash function, where the compression function is built from two fixed, large, distinct permutations

    On the number of transversals in latin squares

    Full text link
    The logarithm of the maximum number of transversals over all latin squares of order nn is greater than n6(lnn+O(1))\frac{n}{6}(\ln n+ O(1))

    On the number of transversals in a class of Latin squares

    No full text
    Denote by Apk\mathcal{A}_p^k the Latin square of order n=pkn=p^k formed by the Cayley table of the additive group (Zpk,+)(\mathbb{Z}_p^k,+), where pp is an odd prime and kk is a positive integer. It is shown that for each pp there exists Q>0Q>0 such that for all sufficiently large kk, the number of transversals in Apk\mathcal{A}_p^k exceeds (nQ)np(p1)(nQ)^{\frac{n}{p(p-1)}}

    Parity of transversals of Latin squares

    Get PDF
    We introduce a notion of parity for transversals, and use it to show that in Latin squares of order 2mod42 \bmod 4, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving E1,,EnE_1,\dots, E_n, where EiE_i is the number of diagonals of a given Latin square that contain exactly ii different symbols. Let A(ij)A(i\mid j) denote the matrix obtained by deleting row ii and column jj from a parent matrix AA. Define tijt_{ij} to be the number of transversals in L(ij)L(i\mid j), for some fixed Latin square LL. We show that tabtcdmod2t_{ab}\equiv t_{cd}\bmod2 for all a,b,c,da,b,c,d and LL. Also, if LL has odd order then the number of transversals of LL equals tabt_{ab} mod 2. We conjecture that tac+tbc+tad+tbd0mod4t_{ac} + t_{bc} + t_{ad} + t_{bd} \equiv 0 \bmod 4 for all a,b,c,da,b,c,d. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a kk-regular bipartite graph on 2n2n vertices is divisible by 44 when nn is odd and k0mod4k\equiv0\bmod 4. We also show that perA(ac)+perA(bc)+perA(ad)+perA(bd)0mod4{\rm per}\, A(a \mid c)+{\rm per}\, A(b \mid c)+{\rm per}\, A(a \mid d)+{\rm per}\, A(b \mid d) \equiv 0 \bmod 4 for all a,b,c,da,b,c,d, when AA is an integer matrix of odd order with all row and columns sums equal to k2mod4k\equiv2\bmod4
    corecore