61 research outputs found

    Characterization of the Burst Stabilization Protocol for the RR/RR CICQ Switch

    Full text link
    Input buffered switches with Virtual Output Queueing (VOQ) can be unstable when presented with unbalanced loads. Existing scheduling algorithms, including iSLIP for Input Queued (IQ) switches and Round Robin (RR) for Combined Input and Crossbar Queued (CICQ) switches, exhibit instability for some schedulable loads. We investigate the use of a queue length threshold and bursting mechanism to achieve stability without requiring internal speed-up. An analytical model is developed to prove that the burst stabilization protocol achieves stability and to predict the minimum burst value needed as a function of offered load. The analytical model is shown to have very good agreement with simulation results. These results show the advantage of the RR/RR CICQ switch as a contender for the next generation of high-speed switches.Comment: Presented at the 28th Annual IEEE Conference on Local Computer Networks (LCN), Bonn/Konigswinter, Germany, Oct 20-24, 200

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Floorplan-Aware High Performance NoC Design

    Full text link
    Las actuales arquitecturas de m�ltiples n�cleos como los chip multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) han adoptado a las redes dentro del chip (NoC) como elemento -ptimo para la inter-conexi-n de los diversos elementos de dichos sistemas. En este sentido, fabricantes de CMPs y MPSoCs han adoptado NoCs sencillas, generalmente con una topolog'a en malla o anillo, ya que son suficientes para satisfacer las necesidades de los sistemas actuales. Sin embargo a medida que los requerimientos del sistema -- baja latencia y alto rendimiento -- se hacen m�s exigentes, estas redes tan simples dejan de ser una soluci-n real. As', la comunidad investigadora ha propuesto y analizado NoCs m�s complejas. No obstante, estas soluciones son m�s dif'ciles de implementar -- especialmente los enlaces largos -- haciendo que este tipo de topolog'as complejas sean demasiado costosas o incluso inviables. En esta tesis, presentamos una metodolog'a de dise-o que minimiza la p�rdida de prestaciones de la red debido a su implementaci-n real. Los principales problemas que se encuentran al implementar una NoC son los conmutadores y los enlaces largos. En esta tesis, el conmutador se ha hecho modular, es decir, formado como uni-n de m-dulos m�s peque-os. En nuestro caso, los m-dulos son id�nticos, donde cada m-dulo es capaz de arbitrar, conmutar, y almacenar los mensajes que le llegan. Posteriormente, flexibilizamos la colocaci-n de estos m-dulos en el chip, permitiendo que m-dulos de un mismo conmutador est�n distribuidos por el chip. Esta metodolog'a de dise-o la hemos aplicado a diferentes escenarios. Primeramente, hemos introducido nuestro conmutador modular en NoCs con topolog'as conocidas como la malla 2D. Los resultados muestran como la modularidad y la distribuci-n del conmutador reducen la latencia y el consumo de potencia de la red. En segundo lugar, hemos utilizado nuestra metodolog'a de dise-o para implementar un crossbar distribuidRoca Pérez, A. (2012). Floorplan-Aware High Performance NoC Design [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17844Palanci

    Doctor of Philosophy

    Get PDF
    dissertationDeep Neural Networks (DNNs) are the state-of-art solution in a growing number of tasks including computer vision, speech recognition, and genomics. However, DNNs are computationally expensive as they are carefully trained to extract and abstract features from raw data using multiple layers of neurons with millions of parameters. In this dissertation, we primarily focus on inference, e.g., using a DNN to classify an input image. This is an operation that will be repeatedly performed on billions of devices in the datacenter, in self-driving cars, in drones, etc. We observe that DNNs spend a vast majority of their runtime to runtime performing matrix-by-vector multiplications (MVM). MVMs have two major bottlenecks: fetching the matrix and performing sum-of-product operations. To address these bottlenecks, we use in-situ computing, where the matrix is stored in programmable resistor arrays, called crossbars, and sum-of-product operations are performed using analog computing. In this dissertation, we propose two hardware units, ISAAC and Newton.In ISAAC, we show that in-situ computing designs can outperform DNN digital accelerators, if they leverage pipelining, smart encodings, and can distribute a computation in time and space, within crossbars, and across crossbars. In the ISAAC design, roughly half the chip area/power can be attributed to the analog-to-digital conversion (ADC), i.e., it remains the key design challenge in mixed-signal accelerators for deep networks. In spite of the ADC bottleneck, ISAAC is able to out-perform the computational efficiency of the state-of-the-art design (DaDianNao) by 8x. In Newton, we take advantage of a number of techniques to address ADC inefficiency. These techniques exploit matrix transformations, heterogeneity, and smart mapping of computation to the analog substrate. We show that Newton can increase the efficiency of in-situ computing by an additional 2x. Finally, we show that in-situ computing, unfortunately, cannot be easily adapted to handle training of deep networks, i.e., it is only suitable for inference of already-trained networks. By improving the efficiency of DNN inference with ISAAC and Newton, we move closer to low-cost deep learning that in turn will have societal impact through self-driving cars, assistive systems for the disabled, and precision medicine

    Scheduling and reconfiguration of interconnection network switches

    Get PDF
    Interconnection networks are important parts of modern computing systems, facilitating communication between a system\u27s components. Switches connecting various nodes of an interconnection network serve to move data in the network. The switch\u27s delay and throughput impact the overall performance of the network and thus the system. Scheduling efficient movement of data through a switch and configuring the switch to realize a schedule are the main themes of this research. We consider various interconnection network switches including (i) crossbar-based switches, (ii) circuit-switched tree switches, and (iii) fat-tree switches. For crossbar-based input-queued switches, a recent result established that logarithmic packet delay is possible. However, this result assumes that packet transmission time through the switch is no less than schedule-generation time. We prove that without this assumption (as is the case in practice) packet delay becomes linear. We also report results of simulations that bear out our result for practical switch sizes and indicate that a fast scheduling algorithm reduces not only packet delay but also buffer size. We also propose a fast mesh-of-trees based distributed switch scheduling (maximal-matching based) algorithm that has polylog complexity. A circuit-switched tree (CST) can serve as an interconnect structure for various computing architectures and models such as the self-reconfigurable gate array and the reconfigurable mesh. A CST is a tree structure with source and destination processing elements as leaves and switches as internal nodes. We design several scheduling and configuration algorithms that distributedly partition a given set of communications into non-conflicting subsets and then establish switch settings and paths on the CST corresponding to the communications. A fat-tree is another widely used interconnection structure in many of today\u27s high-performance clusters. We embed a reconfigurable mesh inside a fat-tree switch to generate efficient connections. We present an R-Mesh-based algorithm for a fat-tree switch that creates buses connecting input and output ports corresponding to various communications using that switch

    Ethernet Networks for Real-Time Use in the ATLAS Experiment

    Get PDF
    Ethernet became today's de-facto standard technology for local area networks. Defined by the IEEE 802.3 and 802.1 working groups, the Ethernet standards cover technologies deployed at the first two layers of the OSI protocol stack. The architecture of modern Ethernet networks is based on switches. The switches are devices usually built using a store-and-forward concept. At the highest level, they can be seen as a collection of queues and mathematically modelled by means of queuing theory. However, the traffic profiles on modern Ethernet networks are rather different from those assumed in classical queuing theory. The standard recommendations for evaluating the performance of network devices define the values that should be measured but do not specify a way of reconciling these values with the internal architecture of the switches. The introduction of the 10 Gigabit Ethernet standard provided a direct gateway from the LAN to the WAN by the means of the WAN PHY. Certain aspects related to the actual use of WAN PHY technology were vaguely defined by the standard. The ATLAS experiment at CERN is scheduled to start operation at CERN in 2007. The communication infrastructure of the Trigger and Data Acquisition System will be built using Ethernet networks. The real-time operational needs impose a requirement for predictable performance on the network part. In view of the diversity of the architectures of Ethernet devices, testing and modelling is required in order to make sure the full system will operate predictably. This thesis focuses on the testing part of the problem and addresses issues in determining the performance for both LAN and WAN connections. The problem of reconciling results from measurements to architectural details of the switches will also be tackled. We developed a scalable traffic generator system based on commercial-off-the-shelf Gigabit Ethernet network interface cards. The generator was able to transmit traffic at the nominal Gigabit Ethernet line rate for all frame sizes specified in the Ethernet standard. The calculation of latency was performed with accuracy in the range of +/- 200 ns. We indicate how certain features of switch architectures may be identified through accurate throughput and latency values measured for specific traffic distributions. At this stage, we present a detailed analysis of Ethernet broadcast support in modern switches. We use a similar hands-on approach to address the problem of extending Ethernet networks over long distances. Based on the 1 Gbit/s traffic generator used in the LAN, we develop a methodology to characterise point-to-point connections over long distance networks. At higher speeds, a combination of commercial traffic generators and high-end servers is employed to determine the performance of the connection. We demonstrate that the new 10 Gigabit Ethernet technology can interoperate with the installed base of SONET/SDH equipment through a series of experiments on point-to-point circuits deployed over long-distance network infrastructure in a multi-operator domain. In this process, we provide a holistic view of the end-to-end performance of 10 Gigabit Ethernet WAN PHY connections through a sequence of measurements starting at the physical transmission layer and continuing up to the transport layer of the OSI protocol stack

    Control of sectioned on-chip communication

    Get PDF

    A Field Programmable Gate Array Architecture for Two-Dimensional Partial Reconfiguration

    Get PDF
    Reconfigurable machines can accelerate many applications by adapting to their needs through hardware reconfiguration. Partial reconfiguration allows the reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. Operating system models have been proposed for partially reconfigurable machines to handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. The main goal of this research is to address some problems that come from the gap between OS4RC and existing chip architectures and the gap between OS4RC models and practical applications. Some existing OS4RC models are based on an impractical assumption that there is no data exchange channel between IP (Intellectual Property) circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP communication channels have severe drawbacks. Those channels do not work well with 2-D partial reconfiguration. They are not suitable for intensive data stream processing. And frequently they are very complicated to design and very expensive. To address these problems, a new chip architecture that can better support inter-IP and IP-I/O communication is proposed and a corresponding OS4RC kernel is then specified. The proposed FPGA architecture is based on an array of clusters of configurable logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of segmented buses that provides inter-IP and IP-I/O communication channels. The proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits under the constraints of the proposed architecture. Features of the new architecture in turns reduce the kernel execution times and enable the runtime scheduling, placement and routing. The area cost and the configuration memory size of the new chip architecture are calculated and analyzed. And the efficiency of the OS4RC kernel is evaluated via simulation using three different task models

    On packet switch design

    Get PDF
    corecore