7,975 research outputs found

    On the mathematical foundations of mutually unbiased bases

    Get PDF
    In order to describe a setting to handle Zauner's conjecture on mutually unbiased bases (MUBs) (stating that in C-d, a set of MUBs of the theoretical maximal size d + 1 exists only if d is a prime power), we pose some fundamental questions which naturally arise. Some of these questions have important consequences for the construction theory of (new) sets of maximal MUBs. Partial answers will be provided in particular cases; more specifically, we will analyze MUBs with associated operator groups that have nilpotence class 2, and consider MUBs of height 1. We will also confirmZauner's conjecture forMUBswith associated finite nilpotent operator groups

    Depicting qudit quantum mechanics and mutually unbiased qudit theories

    Full text link
    We generalize the ZX calculus to quantum systems of dimension higher than two. The resulting calculus is sound and universal for quantum mechanics. We define the notion of a mutually unbiased qudit theory and study two particular instances of these theories in detail: qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits. The calculus allows us to analyze the structure of qudit stabilizer quantum mechanics and provides a geometrical picture of qudit stabilizer theory using D-toruses, which generalizes the Bloch sphere picture for qubit stabilizer quantum mechanics. We also use our framework to describe generalizations of Spekkens toy theory to higher dimensional systems. This gives a novel proof that qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits are operationally equivalent in three dimensions. The qudit pictorial calculus is a useful tool to study quantum foundations, understand the relationship between qubit and qudit quantum mechanics, and provide a novel, high level description of quantum information protocols.Comment: In Proceedings QPL 2014, arXiv:1412.810

    SIC-POVMs and Compatibility among Quantum States

    Full text link
    An unexpected connection exists between compatibility criteria for quantum states and symmetric informationally complete POVMs. Beginning with Caves, Fuchs and Schack's "Conditions for compatibility of quantum state assignments" [Phys. Rev. A 66 (2002), 062111], I show that a qutrit SIC-POVM studied in other contexts enjoys additional interesting properties. Compatibility criteria provide a new way to understand the relationship between SIC-POVMs and mutually unbiased bases, as calculations in the SIC representation of quantum states make clear. This, in turn, illuminates the resources necessary for magic-state quantum computation, and why hidden-variable models fail to capture the vitality of quantum mechanics.Comment: 15 pages, 4 MUBs, 2 errata for CFS (2002), 1 graph with chromatic number 4. v4: journal versio

    MUBs: From finite projective geometry to quantum phase enciphering

    Full text link
    This short note highlights the most prominent mathematical problems and physical questions associated with the existence of the maximum sets of mutually unbiased bases (MUBs) in the Hilbert space of a given dimensionComment: 5 pages, accepted for AIP Conf Book, QCMC 2004, Strathclyde, Glasgow, minor correction
    corecore