249 research outputs found

    On the stability of solution mapping for parametric generalized vector quasiequilibrium problems

    Get PDF
    AbstractIn this paper, we study the solution stability for a class of parametric generalized vector quasiequilibrium problems. By virtue of the parametric gap function, we obtain a sufficient and necessary condition for the Hausdorff lower semicontinuity of the solution mapping to the parametric generalized vector quasiequilibrium problem. The results presented in this paper generalize and improve some main results of Chen et al. (2010) [34], and Zhong and Huang (2011) [35]

    Generalized Differentiation of Parameter-Dependent Sets and Mappings

    Get PDF
    The paper concerns new aspects of generalized differentiation theory that plays a crucial role in many areas of modern variational analysis, optimization, and their applications. In contrast to the majority of previous developments, we focus here on generalized differentiation of parameter-dependent objects (sets, set-valued mappings, and nonsmooth functions), which naturally appear, e.g., in parametric optimization and related topics. The basic generalized differential constructions needed in this case are different for those known in parameter-independent settings, while they still enjoy comprehensive calculus rules developed in this paper

    Variational Analysis of Marginal Functions with Applications to Bilevel Programming

    Get PDF
    This paper pursues a twofold goal. First to derive new results on generalized differentiation in variational analysis focusing mainly on a broad class of intrinsically nondifferentiable marginal/value functions. Then the results established in this direction apply to deriving necessary optimality conditions for the optimistic version of bilevel programs that occupy a remarkable place in optimization theory and its various applications. We obtain new sets of optimality conditions in both smooth and smooth settings of finite-dimensional and infinite-dimensional spaces

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems

    Get PDF
    The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set JJ. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J)l_{\infty}(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of [3] developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case
    corecore