24,338 research outputs found

    Riemannian simplices and triangulations

    Get PDF
    We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary dimension nn, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the image of this barycentric coordinate map. In this work we articulate criteria that guarantee that the barycentric coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate. Quality measures for the "thickness" or "fatness" of Euclidean simplices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case. However, when the dimension is greater than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound that depends on the size of the simplex and local bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory

    On choice of preconditioner for minimum residual methods for nonsymmetric matrices

    Get PDF
    Existing convergence bounds for Krylov subspace methods such as GMRES for nonsymmetric linear systems give little mathematical guidance for the choice of preconditioner. Here, we establish a desirable mathematical property of a preconditioner which guarantees that convergence of a minimum residual method will essentially depend only on the eigenvalues of the preconditioned system, as is true in the symmetric case. Our theory covers only a subset of nonsymmetric coefficient matrices but computations indicate that it might be more generally applicable

    Robust Localization from Incomplete Local Information

    Get PDF
    We consider the problem of localizing wireless devices in an ad-hoc network embedded in a d-dimensional Euclidean space. Obtaining a good estimation of where wireless devices are located is crucial in wireless network applications including environment monitoring, geographic routing and topology control. When the positions of the devices are unknown and only local distance information is given, we need to infer the positions from these local distance measurements. This problem is particularly challenging when we only have access to measurements that have limited accuracy and are incomplete. We consider the extreme case of this limitation on the available information, namely only the connectivity information is available, i.e., we only know whether a pair of nodes is within a fixed detection range of each other or not, and no information is known about how far apart they are. Further, to account for detection failures, we assume that even if a pair of devices is within the detection range, it fails to detect the presence of one another with some probability and this probability of failure depends on how far apart those devices are. Given this limited information, we investigate the performance of a centralized positioning algorithm MDS-MAP introduced by Shang et al., and a distributed positioning algorithm, introduced by Savarese et al., called HOP-TERRAIN. In particular, for a network consisting of n devices positioned randomly, we provide a bound on the resulting error for both algorithms. We show that the error is bounded, decreasing at a rate that is proportional to R/Rc, where Rc is the critical detection range when the resulting random network starts to be connected, and R is the detection range of each device.Comment: 40 pages, 13 figure
    corecore