163 research outputs found

    A Preference-guided Multiobjective Evolutionary Algorithm based on Decomposition

    Get PDF
    Multiobjective evolutionary algorithms based on decomposition (MOEA/Ds) represent a class of widely employed problem solvers for multicriteria optimization problems. In this work we investigate the adaptation of these methods for incorporating preference information prior to the optimization, so that the search process can be biased towards a Pareto-optimal region that better satisfies the aspirations of a decision-making entity. The incorporation of the Preference-based Adaptive Region-of-interest (PAR) framework into the MOEA/D requires only the modification of the reference points used within the scalarization function, which in principle allows a straightforward use in more sophisticated versions of the base algorithm. Experimental results using the UF benchmark set suggest gains in diversity within the region of interest, without significant losses in convergence

    The MOEADr Package – A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition

    Get PDF
    Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) represent a widely used class of population-based metaheuristics for the solution of multicriteria optimization problems. We introduce the MOEADr package, which offers many of these variants as instantiations of a component-oriented framework. This approach contributes for easier reproducibility of existing MOEA/D variants from the literature, as well as for faster development and testing of new composite algorithms. The package offers an standardized, modular implementation of MOEA/D based on this framework, which was designed aiming at providing researchers and practitioners with a standard way to discuss and express MOEA/D variants. In this paper we introduce the design principles behind the MOEADr package, as well as its current components. Three case studies are provided to illustrate the main aspects of the package

    Modified predator-prey (MPP) algorithm for single-and multi-objective optimization problems

    Get PDF
    The aim of this work is to develop an algorithm that can solve multidisciplinary design optimization problems. In predator-prey algorithm, a relatively small number of predators and a much larger number of prey are randomly placed on a two dimensional lattice with connected ends. The predators are partially or completely biased towards one or more objectives, based on which each predator kills the weakest prey in its neighborhood. A stronger prey created through evolution replaces this prey. In case of constrained problems, the sum o f constraint violations serves as an additional objective. Modifications of the basic predator-prey algorithm have been implemented in this study regarding the selection procedure, apparent movement of the predators, mutation strategy, dynamics of the Pareto convergence, etc. Further modifications have been made making the algorithm capable of handling equality and inequality constraints. The final modified algorithm is tested on standard constrained/unconstrained, single and multi-objective optimization problems

    An Evolutionary Algorithm to Optimize Log/Restore Operations within Optimistic Simulation Platforms

    Get PDF
    In this work we address state recoverability in advanced optimistic simulation systems by proposing an evolutionary algorithm to optimize at run-time the parameters associated with state log/restore activities. Optimization takes place by adaptively selecting for each simulation object both (i) the best suited log mode (incremental vs non-incremental) and (ii) the corresponding optimal value of the log interval. Our performance optimization approach allows to indirectly cope with hidden effects (e.g., locality) as well as cross-object effects due to the variation of log/restore parameters for different simulation objects (e.g., rollback thrashing). Both of them are not captured by literature solutions based on analytical models of the overhead associated with log/restore tasks. More in detail, our evolutionary algorithm dynamically adjusts the log/restore parameters of distinct simulation objects as a whole, towards a well suited configuration. In such a way, we prevent negative effects on performance due to the biasing of the optimization towards individual simulation objects, which may cause reduced gains (or even decrease) in performance just due to the aforementioned hidden and/or cross-object phenomena. We also present an application-transparent implementation of the evolutionary algorithm within the ROme OpTimistic Simulator (ROOT-Sim), namely an open source, general purpose simulation environment designed according to the optimistic synchronization paradigm

    Towards Better Integration of Surrogate Models and Optimizers

    Get PDF
    Surrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven to be very effective in solving (synthetic and real-world) computationally expensive optimization problems with a limited number of function evaluations. The two main components of SAEAs are: the surrogate model and the evolutionary optimizer, both of which use parameters to control their respective behavior. These parameters are likely to interact closely, and hence the exploitation of any such relationships may lead to the design of an enhanced SAEA. In this chapter, as a first step, we focus on Kriging and the Efficient Global Optimization (EGO) framework. We discuss potentially profitable ways of a better integration of model and optimizer. Furthermore, we investigate in depth how different parameters of the model and the optimizer impact optimization results. In particular, we determine whether there are any interactions between these parameters, and how the problem characteristics impact optimization results. In the experimental study, we use the popular Black-Box Optimization Benchmarking (BBOB) testbed. Interestingly, the analysis finds no evidence for significant interactions between model and optimizer parameters, but independently their performance has a significant interaction with the objective function. Based on our results, we make recommendations on how best to configure EGO

    An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Get PDF
    Today\u27s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of trade-off solutions among detectors with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the detector\u27s own data structure and the ID domain truth set, and respond heuristically. The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were classified with a 0% false positive rate
    corecore