121,447 research outputs found

    Decentralized Erasure Codes for Distributed Networked Storage

    Full text link
    We consider the problem of constructing an erasure code for storage over a network when the data sources are distributed. Specifically, we assume that there are n storage nodes with limited memory and k<n sources generating the data. We want a data collector, who can appear anywhere in the network, to query any k storage nodes and be able to retrieve the data. We introduce Decentralized Erasure Codes, which are linear codes with a specific randomized structure inspired by network coding on random bipartite graphs. We show that decentralized erasure codes are optimally sparse, and lead to reduced communication, storage and computation cost over random linear coding.Comment: to appear in IEEE Transactions on Information Theory, Special Issue: Networking and Information Theor

    On Codes for Optimal Rebuilding Access

    Get PDF
    MDS (maximum distance separable) array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with r redundancy nodes can correct any r erasures by accessing (reading) all the remaining information in both the systematic nodes and the parity (redundancy) nodes. However, in practice, a single erasure is the most likely failure event; hence, a natural question is how much information do we need to access in order to rebuild a single storage node? We define the rebuilding ratio as the fraction of remaining information accessed during the rebuilding of a single erasure. In our previous work we showed that the optimal rebuilding ratio of 1/r is achievable (using our newly constructed array codes) for the rebuilding of any systematic node, however, all the information needs to be accessed for the rebuilding of the parity nodes. Namely, constructing array codes with a rebuilding ratio of 1/r was left as an open problem. In this paper, we solve this open problem and present array codes that achieve the lower bound of 1/r for rebuilding any single systematic or parity node

    On the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage

    Full text link
    The high repair cost of (n,k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. In this paper, we address bandwidth-optimal (n,k,d) Exact-Repair MDS codes, which allow for any failed node to be repaired exactly with access to arbitrary d survivor nodes, where k<=d<=n-1. We show the existence of Exact-Repair MDS codes that achieve minimum repair bandwidth (matching the cutset lower bound) for arbitrary admissible (n,k,d), i.e., k<n and k<=d<=n-1. Our approach is based on interference alignment techniques and uses vector linear codes which allow to split symbols into arbitrarily small subsymbols.Comment: 20 pages, 6 figure

    Exact Regeneration Codes for Distributed Storage Repair Using Interference Alignment

    Full text link
    The high repair cost of (n,k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. On one end of this spectrum of Regenerating Codes are Minimum Storage Regenerating (MSR) codes that can match the minimum storage cost of MDS codes while also significantly reducing repair bandwidth. In this paper, we describe Exact-MSR codes which allow for any failed nodes (whether they are systematic or parity nodes) to be regenerated exactly rather than only functionally or information-equivalently. We show that Exact-MSR codes come with no loss of optimality with respect to random-network-coding based MSR codes (matching the cutset-based lower bound on repair bandwidth) for the cases of: (a) k/n <= 1/2; and (b) k <= 3. Our constructive approach is based on interference alignment techniques, and, unlike the previous class of random-network-coding based approaches, we provide explicit and deterministic coding schemes that require a finite-field size of at most 2(n-k).Comment: to be submitted to IEEE Transactions on Information Theor

    Asymmetry Helps: Improved Private Information Retrieval Protocols for Distributed Storage

    Get PDF
    We consider private information retrieval (PIR) for distributed storage systems (DSSs) with noncolluding nodes where data is stored using a non maximum distance separable (MDS) linear code. It was recently shown that if data is stored using a particular class of non-MDS linear codes, the MDS-PIR capacity, i.e., the maximum possible PIR rate for MDS-coded DSSs, can be achieved. For this class of codes, we prove that the PIR capacity is indeed equal to the MDS-PIR capacity, giving the first family of non-MDS codes for which the PIR capacity is known. For other codes, we provide asymmetric PIR protocols that achieve a strictly larger PIR rate compared to existing symmetric PIR protocols.Comment: To be presented at 2018 IEEE Information Theory Workshop (ITW'18). See arXiv:1808.09018 for its extended versio
    corecore