588 research outputs found

    Stronger Attacks on Causality-Based Key Agreement

    Full text link
    Remarkably, it has been shown that in principle, security proofs for quantum key-distribution (QKD) protocols can be independent of assumptions on the devices used and even of the fact that the adversary is limited by quantum theory. All that is required instead is the absence of any hidden information flow between the laboratories, a condition that can be enforced either by shielding or by space-time causality. All known schemes for such Causal Key Distribution (CKD) that offer noise-tolerance (and, hence, must use privacy amplification as a crucial step) require multiple devices carrying out measurements in parallel on each end of the protocol, where the number of devices grows with the desired level of security. We investigate the power of the adversary for more practical schemes, where both parties each use a single device carrying out measurements consecutively. We provide a novel construction of attacks that is strictly more powerful than the best known attacks and has the potential to decide the question whether such practical CKD schemes are possible in the negative

    Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    Full text link
    Device independent quantum key distribution aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al. applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al. and techniques adapted from Renner.Comment: 13 pages. Expanded main proofs with more detail, miscellaneous edits for clarit

    No-signalling attacks and implications for (quantum) nonlocality distillation

    Get PDF
    The phenomenon of nonlocality, which can arise when entangled quantum systems are suitably measured, is perhaps one of the most puzzling features of quantum theory to the philosophical mind. It implies that these measurement statistics cannot be explained by hidden variables, as requested by Einstein, and it thus suggests that our universe may not be, in principle, a well-determined entity where the uncertainty we perceive in physical observations stems only from our lack of knowledge of the whole. Besides its philosophical impact, nonlocality is also a resource for information- theoretic tasks since it implies secrecy: If nonlocality limits the predictive power that any hidden variable (in the universe) can have about some observations, then it limits in particular the predictive power of a hidden variable held by an adversary in a cryptographic scenario. We investigate whether nonlocality alone can empower two parties to perform unconditionally secure communication in a feasible manner when only a provably minimal set of assumptions are made for such a task to be possible — independently of the validity of any physical theory (such as quantum theory). Nonlocality has also been of interest in the study of foundations of quantum theory and the principles that stand beyond its mathematical formalism. In an attempt to single out quantum theory within a broader set of theories, the study of nonlocality may help to point out intuitive principles that distinguish it from the rest. In theories where the limits by which quantum theory constrains the strength of nonlocality are surpassed, many “principles” on which an information theorist would rely on are shattered — one example is the hierarchy of communication complexity as the latter becomes completely trivial once a certain degree of nonlocality is overstepped. In order to study the structure of such super-quantum theories — beyond their aforementioned secrecy aspects — we investigate the phenomenon of distillation of nonlocality, the ability to distill stronger forms of nonlocality from weaker ones. By exploiting the inherent connection between nonlocality and secrecy, we provide a novel way of deriving bounds on nonlocality-distillation protocols through an ad versarial view to the problem

    Practical randomness amplification and privatisation with implementations on quantum computers

    Get PDF
    We present an end-to-end and practical randomness amplification and privatisation protocol based on Bell tests. This allows the building of device-independent random number generators which output (near-)perfectly unbiased and private numbers, even if using an uncharacterised quantum device potentially built by an adversary. Our generation rates are linear in the repetition rate of the quantum device and the classical randomness post-processing has quasi-linear complexity - making it efficient on a standard personal laptop. The statistical analysis is also tailored for real-world quantum devices. Our protocol is then showcased on several different quantum computers. Although not purposely built for the task, we show that quantum computers can run faithful Bell tests by adding minimal assumptions. In this semi-device-independent manner, our protocol generates (near-)perfectly unbiased and private random numbers on today's quantum computers.Comment: Important revisions and improvements to v1. inc. new sections, improvements to protocol itself and addition of full technical appendixes. 29+23 pages (15 figures and 2 tables

    Device-independent quantum key distribution secure against collective attacks

    Full text link
    Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. We present here in detail the security proof for a DIQKD protocol introduced in [Phys. Rev. Lett. 98, 230501 (2008)]. This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit the no-signalling principle only), but only holds again collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically at each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.Comment: 25 pages, 3 figure
    • …
    corecore