1,313 research outputs found

    Consensus clustering approach to group brain connectivity matrices

    Get PDF
    A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (i) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (ii) cluster the distance matrix for each node; (iii) build the consensus network from the corresponding partitions; (iv) extract groups of subjects by finding the communities of the consensus network thus obtained. Differently from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pre-training step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real data sets, show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix

    Maximum Margin Clustering for State Decomposition of Metastable Systems

    Full text link
    When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that the large margin technique can be utilized to search for the optimal decomposition without phase space discretization. Moreover, several simulation examples are given to illustrate the effectiveness of the proposed method

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Data mining based cyber-attack detection

    Get PDF

    Deep Metric Learning via Facility Location

    Full text link
    Learning the representation and the similarity metric in an end-to-end fashion with deep networks have demonstrated outstanding results for clustering and retrieval. However, these recent approaches still suffer from the performance degradation stemming from the local metric training procedure which is unaware of the global structure of the embedding space. We propose a global metric learning scheme for optimizing the deep metric embedding with the learnable clustering function and the clustering metric (NMI) in a novel structured prediction framework. Our experiments on CUB200-2011, Cars196, and Stanford online products datasets show state of the art performance both on the clustering and retrieval tasks measured in the NMI and Recall@K evaluation metrics.Comment: Submission accepted at CVPR 201

    Training from a Better Start Point: Active Self-Semi-Supervised Learning for Few Labeled Samples

    Full text link
    Training with fewer annotations is a key issue for applying deep models to various practical domains. To date, semi-supervised learning has achieved great success in training with few annotations. However, confirmation bias increases dramatically as the number of annotations decreases making it difficult to continue reducing the number of annotations. Based on the observation that the quality of pseudo-labels early in semi-supervised training plays an important role in mitigating confirmation bias, in this paper we propose an active self-semi-supervised learning (AS3L) framework. AS3L bootstraps semi-supervised models with prior pseudo-labels (PPL), where PPL is obtained by label propagation over self-supervised features. We illustrate that the accuracy of PPL is not only affected by the quality of features, but also by the selection of the labeled samples. We develop active learning and label propagation strategies to obtain better PPL. Consequently, our framework can significantly improve the performance of models in the case of few annotations while reducing the training time. Experiments on four semi-supervised learning benchmarks demonstrate the effectiveness of the proposed methods. Our method outperforms the baseline method by an average of 7\% on the four datasets and outperforms the baseline method in accuracy while taking about 1/3 of the training time.Comment: 12 pages, 8 figure
    corecore