197 research outputs found

    A polyhedral study of the diameter constrained minimum spanning tree problem

    Get PDF
    This paper provides a first polyhedral study of the diameter constrained minimum spanning tree problem (DMSTP). We introduce a new set of inequalities, the circular-jump inequalities which strengthen the well-known jump inequalities. These inequalities are further generalized in two ways: either by increasing the number of partitions defining a jump, or by combining jumps with cutsets. Most of the proposed new inequalities are shown to define facets of the DMSTP polytope under very mild conditions. Currently best known lower bounds for the DMSTP are obtained from an extended formulation on a layered graph using the concept of central nodes/edges. A subset of the new families of inequalities is shown to be not implied by this layered graph formulation

    Distance Transformation for Network Design Problems

    Get PDF
    International audienceWe propose a new generic way to construct extended formulations for a large class of network design problems with given connectivity requirements. The approach is based on a graph transformation that maps any graph into a layered graph according to a given distance function. The original connectivity requirements are in turn transformed into equivalent connectivity requirements in the layered graph. The mapping is extended to the graphs induced by fractional vectors through an extended linear integer programming formulation. While graphs induced by binary vectors are mapped to isomorphic layered graphs, those induced by fractional vectors are mapped to a set of graphs having worse connectivity properties. Hence, the connectivity requirements in the layered graph may cut off fractional vectors that were feasible for the problem formulated in the original graph. Experiments over instances of the Steiner Forest and Hop-constrained Survivable Network Design problems show that significant gap reductions over the state-of-the art formulations can be obtained

    Topology-Constrained Network Design

    Get PDF
    International audienc

    Optimization of Free Space Optical Wireless Network for Cellular Backhauling

    Full text link
    With densification of nodes in cellular networks, free space optic (FSO) connections are becoming an appealing low cost and high rate alternative to copper and fiber as the backhaul solution for wireless communication systems. To ensure a reliable cellular backhaul, provisions for redundant, disjoint paths between the nodes must be made in the design phase. This paper aims at finding a cost-effective solution to upgrade the cellular backhaul with pre-deployed optical fibers using FSO links and mirror components. Since the quality of the FSO links depends on several factors, such as transmission distance, power, and weather conditions, we adopt an elaborate formulation to calculate link reliability. We present a novel integer linear programming model to approach optimal FSO backhaul design, guaranteeing KK-disjoint paths connecting each node pair. Next, we derive a column generation method to a path-oriented mathematical formulation. Applying the method in a sequential manner enables high computational scalability. We use realistic scenarios to demonstrate our approaches efficiently provide optimal or near-optimal solutions, and thereby allow for accurately dealing with the trade-off between cost and reliability

    A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints

    Get PDF
    Given a graph, a set of origin-destination (OD) pairs with communication requirements, and an integer k >= 2, the network design problem with vulnerability constraints (NDPVC) is to identify a subgraph with the minimum total edge costs such that, between each OD pair, there exist a hop-constrained primary path and a hop-constrained backup path after any k - 1 edges of the graph fail. Formulations exist for single-edge failures (i.e., k = 2). To solve the NDPVC for an arbitrary number of edge failures, we develop two natural formulations based on the notion of length-bounded cuts. We compare their strengths and flexibilities in solving the problem for k >= 3. We study different methods to separate infeasible solutions by computing length-bounded cuts of a given size. Experimental results show that, for single-edge failures, our formulation increases the number of solved benchmark instances from 61% (obtained within a two-hour limit by the best published algorithm) to more than 95%, thus increasing the number of solved instances by 1,065. Our formulation also accelerates the solution process for larger hop limits and efficiently solves the NDPVC for general k. We test our best algorithm for two to five simultaneous edge failures and investigate the impact of multiple failures on the network design

    Electrical Flows over Spanning Trees

    Full text link
    The network reconfiguration problem seeks to find a rooted tree TT such that the energy of the (unique) feasible electrical flow over TT is minimized. The tree requirement on the support of the flow is motivated by operational constraints in electricity distribution networks. The bulk of existing results on convex optimization over vertices of polytopes and on the structure of electrical flows do not easily give guarantees for this problem, while many heuristic methods have been developed in the power systems community as early as 1989. Our main contribution is to give the first provable approximation guarantees for the network reconfiguration problem. We provide novel lower bounds and corresponding approximation factors for various settings ranging from min{O(mn),O(n)}\min\{O(m-n), O(n)\} for general graphs, to O(n)O(\sqrt{n}) over grids with uniform resistances on edges, and O(1)O(1) for grids with uniform edge resistances and demands. To obtain the result for general graphs, we propose a new method for (approximate) spectral graph sparsification, which may be of independent interest. Using insights from our theoretical results, we propose a general heuristic for the network reconfiguration problem that is orders of magnitude faster than existing methods in the literature, while obtaining comparable performance.Comment: 37 pages, 11 figure

    The Multilayer Capacitated Survivable IP Network Design Problem : valid inequalities and Branch-and-Cut

    No full text
    Telecommunication networks can be seen as the stacking of several layers like, for instance, IP-over-Optical networks. This infrastructure has to be sufficiently survivable to restore the traffic in the event of a failure. Moreover, it should have adequate capacities so that the demands can be routed between the origin-destinations. In this paper we consider the Multilayer Capacitated Survivable IP Network Design problem. We study two variants of this problem with simple and multiple capacities. We give two multicommodity flow formulations for each variant of this problem and describe some valid inequalities. In particular, we characterize valid inequalities obtained using Chvatal-Gomory procedure from the well known Cutset inequalities. We show that some of these inequalities are facet defining. We discuss separation routines for all the valid inequalities. Using these results, we develop a Branch-and-Cut algorithm and a Branch-and-Cut-and-Price algorithm for each variant and present extensive computational results
    corecore