730 research outputs found

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Acoustic Adaptation to Dynamic Background Conditions with Asynchronous Transformations

    Get PDF
    This paper proposes a framework for performing adaptation to complex and non-stationary background conditions in Automatic Speech Recognition (ASR) by means of asynchronous Constrained Maximum Likelihood Linear Regression (aCMLLR) transforms and asynchronous Noise Adaptive Training (aNAT). The proposed method aims to apply the feature transform that best compensates the background for every input frame. The implementation is done with a new Hidden Markov Model (HMM) topology that expands the usual left-to-right HMM into parallel branches adapted to different background conditions and permits transitions among them. Using this, the proposed adaptation does not require ground truth or previous knowledge about the background in each frame as it aims to maximise the overall log-likelihood of the decoded utterance. The proposed aCMLLR transforms can be further improved by retraining models in an aNAT fashion and by using speaker-based MLLR transforms in cascade for an efficient modelling of background effects and speaker. An initial evaluation in a modified version of the WSJCAM0 corpus incorporating 7 different background conditions provides a benchmark in which to evaluate the use of aCMLLR transforms. A relative reduction of 40.5% in Word Error Rate (WER) was achieved by the combined use of aCMLLR and MLLR in cascade. Finally, this selection of techniques was applied in the transcription of multi-genre media broadcasts, where the use of aNAT training, aCMLLR transforms and MLLR transforms provided a relative improvement of 2–3%

    Combining i-vector representation and structured neural networks for rapid adaptation

    Get PDF

    Likelihood-Maximizing-Based Multiband Spectral Subtraction for Robust Speech Recognition

    Get PDF
    Automatic speech recognition performance degrades significantly when speech is affected by environmental noise. Nowadays, the major challenge is to achieve good robustness in adverse noisy conditions so that automatic speech recognizers can be used in real situations. Spectral subtraction (SS) is a well-known and effective approach; it was originally designed for improving the quality of speech signal judged by human listeners. SS techniques usually improve the quality and intelligibility of speech signal while speech recognition systems need compensation techniques to reduce mismatch between noisy speech features and clean trained acoustic model. Nevertheless, correlation can be expected between speech quality improvement and the increase in recognition accuracy. This paper proposes a novel approach for solving this problem by considering SS and the speech recognizer not as two independent entities cascaded together, but rather as two interconnected components of a single system, sharing the common goal of improved speech recognition accuracy. This will incorporate important information of the statistical models of the recognition engine as a feedback for tuning SS parameters. By using this architecture, we overcome the drawbacks of previously proposed methods and achieve better recognition accuracy. Experimental evaluations show that the proposed method can achieve significant improvement of recognition rates across a wide range of signal to noise ratios
    • …
    corecore