156 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations

    Dimensioning backbone networks for multi-site data centers: exploiting anycast routing for resilience

    Get PDF
    In the current era of big data, applications increasingly rely on powerful computing infrastructure residing in large data centers (DCs), often adopting cloud computing technology. Clearly, this necessitates efficient and resilient networking infrastructure to connect the users of these applications with the data centers hosting them. In this paper, we focus on backbone network infrastructure on large geographical scales (i.e., the so-called wide area networks), which typically adopts optical network technology. In particular, we study the problem of dimensioning such backbone networks: what bandwidth should each of the links provide for the traffic, originating at known sources, to reach the data centers? And possibly even: how many such DCs should we deploy, and at what locations? More concretely, we summarize our recent work that essentially addresses the following fundamental research questions: (1) Does the anycast routing strategy influence the amount of required network resources? (2) Can we exploit anycast routing for resilience purposes, i.e., relocate to a different DC under failure conditions, to reduce resource capacity requirements? (3) Is it advantageous to change anycast request destinations from one DC location to the other, from one time period to the next, if service requests vary over time

    Characterization, design and re-optimization on multi-layer optical networks

    Get PDF
    L'augment de volum de tràfic IP provocat per l'increment de serveis multimèdia com HDTV o vídeo conferència planteja nous reptes als operadors de xarxa per tal de proveir transmissió de dades eficient. Tot i que les xarxes mallades amb multiplexació per divisió de longitud d'ona (DWDM) suporten connexions òptiques de gran velocitat, aquestes xarxes manquen de flexibilitat per suportar tràfic d’inferior granularitat, fet que provoca un pobre ús d'ample de banda. Per fer front al transport d'aquest tràfic heterogeni, les xarxes multicapa representen la millor solució. Les xarxes òptiques multicapa permeten optimitzar la capacitat mitjançant l'empaquetament de connexions de baixa velocitat dins de connexions òptiques de gran velocitat. Durant aquesta operació, es crea i modifica constantment una topologia virtual dinàmica gràcies al pla de control responsable d’aquestes operacions. Donada aquesta dinamicitat, un ús sub-òptim de recursos pot existir a la xarxa en un moment donat. En aquest context, una re-optimizació periòdica dels recursos utilitzats pot ser aplicada, millorant així l'ús de recursos. Aquesta tesi està dedicada a la caracterització, planificació, i re-optimització de xarxes òptiques multicapa de nova generació des d’un punt de vista unificat incloent optimització als nivells de capa física, capa òptica, capa virtual i pla de control. Concretament s'han desenvolupat models estadístics i de programació matemàtica i meta-heurístiques. Aquest objectiu principal s'ha assolit mitjançant cinc objectius concrets cobrint diversos temes oberts de recerca. En primer lloc, proposem una metodologia estadística per millorar el càlcul del factor Q en problemes d'assignació de ruta i longitud d'ona considerant interaccions físiques (IA-RWA). Amb aquest objectiu, proposem dos models estadístics per computar l'efecte XPM (el coll d'ampolla en termes de computació i complexitat) per problemes IA-RWA, demostrant la precisió d’ambdós models en el càlcul del factor Q en escenaris reals de tràfic. En segon lloc i fixant-nos a la capa òptica, presentem un nou particionament del conjunt de longituds d'ona que permet maximitzar, respecte el cas habitual, la quantitat de tràfic extra proveït en entorns de protecció compartida. Concretament, definim diversos models estadístics per estimar la quantitat de tràfic donat un grau de servei objectiu, i diferents models de planificació de xarxa amb l'objectiu de maximitzar els ingressos previstos i el valor actual net de la xarxa. Després de resoldre aquests problemes per xarxes reals, concloem que la nostra proposta maximitza ambdós objectius. En tercer lloc, afrontem el disseny de xarxes multicapa robustes davant de fallida simple a la capa IP/MPLS i als enllaços de fibra. Per resoldre aquest problema eficientment, proposem un enfocament basat en sobre-dimensionar l'equipament de la capa IP/MPLS i recuperar la connectivitat i el comparem amb la solució convencional basada en duplicar la capa IP/MPLS. Després de comparar solucions mitjançant models ILP i heurístiques, concloem que la nostra solució permet obtenir un estalvi significatiu en termes de costos de desplegament. Com a quart objectiu, introduïm un mecanisme adaptatiu per reduir l'ús de ports opto-electrònics (O/E) en xarxes multicapa sota escenaris de tràfic dinàmic. Una formulació ILP i diverses heurístiques són desenvolupades per resoldre aquest problema, que permet reduir significativament l’ús de ports O/E en temps molt curts. Finalment, adrecem el problema de disseny resilient del pla de control GMPLS. Després de proposar un nou model analític per quantificar la resiliència en topologies mallades de pla de control, usem aquest model per proposar un problema de disseny de pla de control. Proposem un procediment iteratiu lineal i una heurística i els usem per resoldre instàncies reals, arribant a la conclusió que es pot reduir significativament la quantitat d'enllaços del pla de control sense afectar la qualitat de servei a la xarxa.The explosion of IP traffic due to the increase of IP-based multimedia services such as HDTV or video conferencing poses new challenges to network operators to provide a cost-effective data transmission. Although Dense Wavelength Division Multiplexing (DWDM) meshed transport networks support high-speed optical connections, these networks lack the flexibility to support sub-wavelength traffic leading to poor bandwidth usage. To cope with the transport of that huge and heterogeneous amount of traffic, multilayer networks represent the most accepted architectural solution. Multilayer optical networks allow optimizing network capacity by means of packing several low-speed traffic streams into higher-speed optical connections (lightpaths). During this operation, a dynamic virtual topology is created and modified the whole time thanks to a control plane responsible for the establishment, maintenance, and release of connections. Because of this dynamicity, a suboptimal allocation of resources may exist at any time. In this context, a periodically resource reallocation could be deployed in the network, thus improving network resource utilization. This thesis is devoted to the characterization, planning, and re-optimization of next-generation multilayer networks from an integral perspective including physical layer, optical layer, virtual layer, and control plane optimization. To this aim, statistical models, mathematical programming models and meta-heuristics are developed. More specifically, this main objective has been attained by developing five goals covering different open issues. First, we provide a statistical methodology to improve the computation of the Q-factor for impairment-aware routing and wavelength assignment problems (IA-RWA). To this aim we propose two statistical models to compute the Cross-Phase Modulation variance (which represents the bottleneck in terms of computation time and complexity) in off-line and on-line IA-RWA problems, proving the accuracy of both models when computing Q-factor values in real traffic scenarios. Second and moving to the optical layer, we present a new wavelength partitioning scheme that allows maximizing the amount of extra traffic provided in shared path protected environments compared with current solutions. Specifically, we define several statistical models to estimate the traffic intensity given a target grade of service, and different network planning problems for maximizing the expected revenues and net present value. After solving these problems for real networks, we conclude that our proposed scheme maximizes both revenues and NPV. Third, we tackle the design of survivable multilayer networks against single failures at the IP/MPLS layer and WSON links. To efficiently solve this problem, we propose a new approach based on over-dimensioning IP/MPLS devices and lightpath connectivity and recovery and we compare it against the conventional solution based on duplicating backbone IP/MPLS nodes. After evaluating both approaches by means of ILP models and heuristic algorithms, we conclude that our proposed approach leads to significant CAPEX savings. Fourth, we introduce an adaptive mechanism to reduce the usage of opto-electronic (O/E) ports of IP/MPLS-over-WSON multilayer networks in dynamic scenarios. A ILP formulation and several heuristics are developed to solve this problem, which allows significantly reducing the usage of O/E ports in very short running times. Finally, we address the design of resilient control plane topologies in GMPLS-enabled transport networks. After proposing a novel analytical model to quantify the resilience in mesh control plane topologies, we use this model to propose a problem to design the control plane topology. An iterative model and a heuristic are proposed and used to solve real instances, concluding that a significant reduction in the number of control plane links can be performed without affecting the quality of service of the network

    Design and optimization of optical grids and clouds

    Get PDF

    Optical Grid Network Dimensioning, Provisioning, and Job Scheduling

    Get PDF
    An optical grid network reliably provides high speed communications. It consists of grid resources (e.g., computing and data servers) and huge-data paths that are connected to geographically dispersed resources and users. One of the important issues is dimensioning optical grid networks, i.e., to determine the link bandwidth utilization and amount of server resources, and finding the location of servers. Another issue is the provisioning of the job requests (maximization of services) on the capacitated networks, also referred to as Grade of Service (GoS). Additionally, job scheduling on the servers has also an important impact on the utilization of computing and network resources. Dimensioning optical grid network is based on Anycast Routing and Wavelength Assignment (ACRWA) with the objective of minimizing (min-ACRWA) the resources. The objective of GoS is maximizing the number of job requests (max-ACRWA) under the limited resources. Given that users of such optical grid networks in general do not care about the exact physical locations of the server resources, a degree of freedom arises in choosing for each of their requests the most appropriate server location. We will exploit this anycast routing principle -- i.e., the source of the traffic is given, but the destination can be chosen rather freely. To provide resilience, traffic may be relocated to alternate destinations in case of network/server failures. This thesis investigates dimensioning optical grids networks and task scheduling. In the first part, we present the link capacity dimensioning through scalable exact Integer Linear Programming (ILP) optimization models (min-ACRWA) with survivability. These models take step by step transition from the classical RWA (fixed destination) to anycast routing principle including shared path protection scheme. In the second part, we present scalable optimization models for maximizing the IT services (max-ACRWA) subject to survivability mechanism under limited link transport capacities. We also propose the link capacity formulations based on the distance from the servers and the traffic data set. In the third part, we jointly investigate the link dimensioning and the location of servers in an optical grid, where the anycast routing principle is applied for resiliency under different levels of protection schemes. We propose three different decomposition schemes for joint optimization of link dimensioning and finding the location of servers. In the last part of this research, we propose the exact task scheduling ILP formulations for optical grids (data centers). These formulations can also be used in advance reservation systems to allocate the grid resources. The purpose of this study is to design efficient tools for planning and management of the optical grid networks

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times
    • …
    corecore