2,228 research outputs found

    Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-cell Uplink Networks

    Full text link
    We introduce an opportunistic interference mitigation (OIM) protocol, where a user scheduling strategy is utilized in KK-cell uplink networks with time-invariant channel coefficients and base stations (BSs) having MM antennas. Each BS opportunistically selects a set of users who generate the minimum interference to the other BSs. Two OIM protocols are shown according to the number SS of simultaneously transmitting users per cell: opportunistic interference nulling (OIN) and opportunistic interference alignment (OIA). Then, their performance is analyzed in terms of degrees-of-freedom (DoFs). As our main result, it is shown that KMKM DoFs are achievable under the OIN protocol with MM selected users per cell, if the total number NN of users in a cell scales at least as SNR(K−1)M\text{SNR}^{(K-1)M}. Similarly, it turns out that the OIA scheme with SS(<M<M) selected users achieves KSKS DoFs, if NN scales faster than SNR(K−1)S\text{SNR}^{(K-1)S}. These results indicate that there exists a trade-off between the achievable DoFs and the minimum required NN. By deriving the corresponding upper bound on the DoFs, it is shown that the OIN scheme is DoF optimal. Finally, numerical evaluation, a two-step scheduling method, and the extension to multi-carrier scenarios are shown.Comment: 18 pages, 3 figures, Submitted to IEEE Transactions on Communication

    A survey and tutorial of electromagnetic radiation and reduction in mobile communication systems

    Get PDF
    This paper provides a survey and tutorial of electromagnetic (EM) radiation exposure and reduction in mobile communication systems. EM radiation exposure has received a fair share of interest in the literature; however, this work is one of the first to compile the most interesting results and ideas related to EM exposure in mobile communication systems and present possible ways of reducing it. We provide a comprehensive survey of existing literature and also offer a tutorial on the dosimetry, metrics, international projects as well as guidelines and limits on the exposure from EM radiation in mobile communication systems. Based on this survey and given that EM radiation exposure is closely linked with specific absorption rate (SAR) and transmit power usage, we propose possible techniques for reducing EM radiation exposure in mobile communication systems by exploring known concepts related to SAR and transmit power reduction in mobile systems. Thus, this paper serves as an introductory guide to EM radiation exposure in mobile communication systems and provides insights toward the design of future low-EM exposure mobile communication networks

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Achieving "Massive MIMO" Spectral Efficiency with a Not-so-Large Number of Antennas

    Full text link
    The main focus and contribution of this paper is a novel network-MIMO TDD architecture that achieves spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell. The proposed architecture is based on a family of network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference constraints, uplink pilot signals reuse across cells, and frequency reuse. The key idea consists of partitioning the users population into geographically determined "bins", such that all users in the same bin are statistically equivalent, and use the optimal network-MIMO architecture in the family for each bin. A scheduler takes care of serving the different bins on the time-frequency slots, in order to maximize a desired network utility function that captures some desired notion of fairness. This results in a mixed-mode network-MIMO architecture, where different schemes, each of which is optimized for the served user bin, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a clean and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios. The performance predicted by the large-system asymptotic analysis matches very well the finite-dimensional simulations. Overall, the system spectral efficiency obtained by the proposed architecture is similar to that achieved by "Massive MIMO", with a 10-fold reduction in the number of antennas at the base stations (roughly, from 500 to 50 antennas).Comment: Full version with appendice (proofs of theorems). A shortened version without appendice was submitted to IEEE Trans. on Wireless Commun. Appendix B was revised after submissio
    • …
    corecore