93 research outputs found

    Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Full text link
    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular Euclideanization'' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an ``Encyclopedia of Mathematical Physics'' contribution hep-th/0502125.Comment: 55 pages, removal of some typos in section

    Invariant Distributionally Scrambled Manifolds for an Annihilation Operator

    Get PDF
    This note proves that the annihilation operator of a quantum harmonic oscillator admits an invariant distributionally ε-scrambled linear manifold for any 0<ε<2. This is a positive answer to Question 1 by Wu and Chen (2013)

    Mini-Workshop: Product Systems and Independence in Quantum Dynamics

    Get PDF
    Quantum dynamics, both reversible (i.e., closed quantum systems) and irreversible (i.e., open quantum systems), gives rise to product systems of Hilbert spaces or, more generally, of Hilbert modules. When we consider reversible dynamics that dilates an irreversible dynamics, then the product system of the latter is equal to the product system of the former (or is contained in a unique way). Whenever the dynamics is on a proper subalgebra of the algebra of all bounded operators on a Hilbert space, in particular, when the open system is classical (commutative) it is indispensable that we use Hilbert modules. The product system of a reversible dynamics is intimately related to a filtration of subalgebras that are independent in a state or conditionally independent in a conditional expectation of the reversible system. This has been illustrated in many concrete dilations that have been obtained with the help of quantum stochastic calculus. Here the underlying Fock space or module determines the sort of quantum independence underlying the reversible system. The mini-workshop brought together experts from quantum dynamics, product systems and quantum independence who have contributed to the general theory or who have studied intriguing examples. As the implications of the tight relationship between product systems and independence had so far been largely neglected, we expect from our mini-workshop a strong innovative impulse to this field

    Fourth moment theorems on the Poisson space in any dimension

    Full text link
    We extend to any dimension the quantitative fourth moment theorem on the Poisson setting, recently proved by C. D\"obler and G. Peccati (2017). In particular, by adapting the exchangeable pairs couplings construction introduced by I. Nourdin and G. Zheng (2017) to the Poisson framework, we prove our results under the weakest possible assumption of finite fourth moments. This yields a Peccati-Tudor type theorem, as well as an optimal improvement in the univariate case. Finally, a transfer principle "from-Poisson-to-Gaussian" is derived, which is closely related to the universality phenomenon for homogeneous multilinear sums.Comment: Minor revision. to appear in Electron. J. Proba

    Shocks, Superconvergence, and a Stringy Equivalence Principle

    Get PDF
    We study propagation of a probe particle through a series of closely situated gravitational shocks. We argue that in any UV-complete theory of gravity the result does not depend on the shock ordering - in other words, coincident gravitational shocks commute. Shock commutativity leads to nontrivial constraints on low-energy effective theories. In particular, it excludes non-minimal gravitational couplings unless extra degrees of freedom are judiciously added. In flat space, these constraints are encoded in the vanishing of a certain "superconvergence sum rule." In AdS, shock commutativity becomes the statement that average null energy (ANEC) operators commute in the dual CFT. We prove commutativity of ANEC operators in any unitary CFT and establish sufficient conditions for commutativity of more general light-ray operators. Superconvergence sum rules on CFT data can be obtained by inserting complete sets of states between light-ray operators. In a planar 4d CFT, these sum rules express (a-c)/c in terms of the OPE data of single-trace operators.Comment: 93 pages plus appendice

    Density matrix equations in astrophysics and cosmology

    Get PDF

    Introduction to Modern Canonical Quantum General Relativity

    Full text link
    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory providing a first substantial evidence for a theory in which the gravitational field acts as a natural UV cut-off. An effort has been made to provide a self-contained exposition of a restricted amount of material at the appropriate level of rigour which at the same time is accessible to graduate students with only basic knowledge of general relativity and quantum field theory on Minkowski space.Comment: 301 pages, Latex; based in part on the author's Habilitation Thesis "Mathematische Formulierung der Quanten-Einstein-Gleichungen", University of Potsdam, Potsdam, Germany, January 2000; submitted to the on-line journal Living Reviews; subject to being updated on at least a bi-annual basi
    corecore