14 research outputs found

    On the intersection of distance-jj-ovoids and subpolygons in generalized polygons

    Get PDF
    De Wispelaere and Van Maldeghem gave a technique for calculating the intersection sizes of combinatorial substructures associated with regular partitions of distance-regular graphs. This technique was based on the orthogonality of the eigenvectors which correspond to distinct eigenvalues of the (symmetric) adjacency matrix. In the present paper, we give a more general method for calculating intersection sizes of combinatorial structures. The proof of this method is based on the solution of a linear system of equations which is obtained by means of double countings. We also give a new class of regular partitions of generalized hexagons and determine under which conditions ovoids and subhexagons of order (s′,t′)(s',t') of a generalized hexagon of order intersectinaconstantnumberofpoints.Iftheautomorphismgroupofthegeneralizedhexagonissufficientlylarge,thenthisisthecaseifandonlyif=s′t′ intersect in a constant number of points. If the automorphism group of the generalized hexagon is sufficiently large, then this is the case if and only if =s't'. We derive a similar result for the intersection of distance-2-ovoids and suboctagons of generalized octagons

    Dense near octagons with four points on each line, III

    Get PDF
    This is the third paper dealing with the classification of the dense near octagons of order (3, t). Using the partial classification of the valuations of the possible hexes obtained in [12], we are able to show that almost all such near octagons admit a big hex. Combining this with the results in [11], where we classified the dense near octagons of order (3, t) with a big hex, we get an incomplete classification for the dense near octagons of order (3, t): There are 28 known examples and a few open cases. For each open case, we have a rather detailed description of the structure of the near octagons involved

    Dual embeddings of dense near polygons

    Get PDF
    Let e: S -> Sigma be a full polarized projective embedding of a dense near polygon S, i.e., for every point p of S, the set H(p) of points at non-maximal distance from p is mapped by e into a hyperplane Pi(p) of Sigma. We show that if every line of S is incident with precisely three points or if S satisfies a certain property (P(de)) then the map p bar right arrow Pi p defines a full polarized embedding e* (the so-called dual embedding of e) of S into a subspace of the dual Sigma* of Sigma. This generalizes a result of [6] where it was shown that every embedding of a thick dual polar space has a dual embedding. We determine which known dense near polygons satisfy property (P(de)). This allows us to conclude that every full polarized embedding of a known dense near polygon has a dual embedding

    On collineations and dualities of finite generalized polygons

    Get PDF
    In this paper we generalize a result of Benson to all finite generalized polygons. In particular, given a collineation theta of a finite generalized polygon S, we obtain a relation between the parameters of S and, for various natural numbers i, the number of points x which are mapped to a point at distance i from x by theta. As a special case we consider generalized 2n-gons of order (1,t) and determine, in the generic case, the exact number of absolute points of a given duality of the underlying generalized n-gon of order t

    On Q-polynomial regular near 2d-gons

    Get PDF
    We discuss thick regular near 2d-gons with a Q-polynomial collinearity graph. For da parts per thousand yen4, we show that apart from Hamming near polygons and dual polar spaces there are no thick Q-polynomial regular near polygons. We also show that no regular near hexagons exist with parameters (s, t (2), t) equal to (3, 1, 34), (8, 4, 740), (92, 64, 1314560), (95, 19, 1027064) or (105, 147, 2763012). Such regular near hexagons are necessarily Q-polynomial. All these nonexistence results imply the nonexistence of distance-regular graphs with certain classical parameters. We also discuss some implications for the classification of dense near polygons with four points per line

    Regular partitions of half-spin geometries

    Get PDF
    We describe several families of regular partitions of half-spin geometries and determine their associated parameters and eigenvalues. We also give a general method for computing the eigenvalues of regular partitions of half-spin geometries

    Incidence geometry from an algebraic graph theory point of view

    Get PDF
    The goal of this thesis is to apply techniques from algebraic graph theory to finite incidence geometry. The incidence geometries under consideration include projective spaces, polar spaces and near polygons. These geometries give rise to one or more graphs. By use of eigenvalue techniques, we obtain results on these graphs and on their substructures that are regular or extremal in some sense. The first chapter introduces the basic notions of geometries, such as projective and polar spaces. In the second chapter, we introduce the necessary concepts from algebraic graph theory, such as association schemes and distance-regular graphs, and the main techniques, including the fundamental contributions by Delsarte. Chapter 3 deals with the Grassmann association schemes, or more geometrically: with the projective geometries. Several examples of interesting subsets are given, and we can easily derive completely combinatorial properties of them. Chapter 4 discusses the association schemes from classical finite polar spaces. One of the main applications is obtaining bounds for the size of substructures known as partial m- systems. In one specific case, where the partial m-systems are partial spreads in the polar space H(2d − 1, q^2) with d odd, the bound is new and even tight. A variant of the famous Erdős-Ko-Rado problem is considered in Chapter 5, where we study sets of pairwise non-trivially intersecting maximal totally isotropic subspaces in polar spaces. A combination of geometric and algebraic techniques is used to obtain a classification of such sets of maximum size, except for one specific polar space, namely H(2d − 1, q^2) for odd rank d ≥ 5. Near polygons, including generalized polygons and dual polar spaces, are studied in the last chapter. Several results on substructures in these geometries are given. An inequality of Higman on the parameters of generalized quadrangles is generalized. Finally, it is proved that in a specific dual polar space, a highly regular substructure would yield a distance- regular graph, generalizing a result on hemisystems. The appendix consists of an alternative proof for one of the main results in the thesis, a list of open problems and a summary in Dutch
    corecore