261 research outputs found

    Degree Conditions for Hamiltonian Properties of Claw-free Graphs

    Get PDF
    This thesis contains many new contributions to the field of hamiltonian graph theory, a very active subfield of graph theory. In particular, we have obtained new sufficient minimum degree and degree sum conditions to guarantee that the graphs satisfying these conditions, or their line graphs, admit a Hamilton cycle (or a Hamilton path), unless they have a small order or they belong to well-defined classes of exceptional graphs. Here, a Hamilton cycle corresponds to traversing the vertices and edges of the graph in such a way that all their vertices are visited exactly once, and we return to our starting vertex (similarly, a Hamilton path reflects a similar way of traversing the graph, but without the last restriction, so we might terminate at a different vertex). In Chapter 1, we presented an introduction to the topics of this thesis together with Ryjáček’s closure for claw-free graphs, Catlin’s reduction method, and the reduction of the core of a graph. In Chapter 2, we found the best possible bounds for the minimum degree condition and the minimum degree sums condition of adjacent vertices for traceability of 2-connected claw-free graph, respectively. In addition, we decreased these lower bounds with one family of well characterized exceptional graphs. In Chapter 3, we extended recent results about the conjecture of Benhocine et al. and results about the conjecture of Z.-H Chen and H.-J Lai. In Chapters 4, 5 and 6, we have successfully tried to unify and extend several existing results involving the degree and neighborhood conditions for the hamiltonicity and traceability of 2-connected claw-free graphs. Throughout this thesis, we have investigated the existence of Hamilton cycles and Hamilton paths under different types of degree and neighborhood conditions, including minimum degree conditions, minimum degree sum conditions on adjacent pairs of vertices, minimum degree sum conditions over all independent sets of t vertices of a graph, minimum cardinality conditions on the neighborhood union over all independent sets of t vertices of a graph, as well minimum cardinality conditions on the neighborhood union over all t vertex sets of a graph. Despite our new contributions, many problems and conjectures remain unsolved

    Graphs with at most two moplexes

    Full text link
    A moplex is a natural graph structure that arises when lifting Dirac's classical theorem from chordal graphs to general graphs. However, while every non-complete graph has at least two moplexes, little is known about structural properties of graphs with a bounded number of moplexes. The study of these graphs is motivated by the parallel between moplexes in general graphs and simplicial modules in chordal graphs: Unlike in the moplex setting, properties of chordal graphs with a bounded number of simplicial modules are well understood. For instance, chordal graphs having at most two simplicial modules are interval. In this work we initiate an investigation of kk-moplex graphs, which are defined as graphs containing at most kk moplexes. Of particular interest is the smallest nontrivial case k=2k=2, which forms a counterpart to the class of interval graphs. As our main structural result, we show that the class of connected 22-moplex graphs is sandwiched between the classes of proper interval graphs and cocomparability graphs; moreover, both inclusions are tight for hereditary classes. From a complexity theoretic viewpoint, this leads to the natural question of whether the presence of at most two moplexes guarantees a sufficient amount of structure to efficiently solve problems that are known to be intractable on cocomparability graphs, but not on proper interval graphs. We develop new reductions that answer this question negatively for two prominent problems fitting this profile, namely Graph Isomorphism and Max-Cut. On the other hand, we prove that every connected 22-moplex graph contains a Hamiltonian path, generalising the same property of connected proper interval graphs. Furthermore, for graphs with a higher number of moplexes, we lift the previously known result that graphs without asteroidal triples have at most two moplexes to the more general setting of larger asteroidal sets

    Connected domination number and traceable graphs

    Get PDF

    Spanning spiders and light-splitting switches

    Get PDF
    AbstractMotivated by a problem in the design of optical networks, we ask when a graph has a spanning spider (subdivision of a star), or, more generally, a spanning tree with a bounded number of branch vertices. We investigate the existence of these spanning subgraphs in analogy to classical studies of Hamiltonicity

    Proper connection number of graphs

    Get PDF
    The concept of \emph{proper connection number} of graphs is an extension of proper colouring and is motivated by rainbow connection number of graphs. Let GG be an edge-coloured graph. Andrews et al.\cite{Andrews2016} and, independently, Borozan et al.\cite{Borozan2012} introduced the concept of proper connection number as follows: A coloured path PP in an edge-coloured graph GG is called a \emph{properly coloured path} or more simple \emph{proper path} if two any consecutive edges receive different colours. An edge-coloured graph GG is called a \emph{properly connected graph} if every pair of vertices is connected by a proper path. The \emph{proper connection number}, denoted by pc(G)pc(G), of a connected graph GG is the smallest number of colours that are needed in order to make GG properly connected. Let k≥2k\geq2 be an integer. If every two vertices of an edge-coloured graph GG are connected by at least kk proper paths, then GG is said to be a \emph{properly kk-connected graph}. The \emph{proper kk-connection number} pck(G)pc_k(G), introduced by Borozan et al. \cite{Borozan2012}, is the smallest number of colours that are needed in order to make GG a properly kk-connected graph. The aims of this dissertation are to study the proper connection number and the proper 2-connection number of several classes of connected graphs. All the main results are contained in Chapter 4, Chapter 5 and Chapter 6. Since every 2-connected graph has proper connection number at most 3 by Borozan et al. \cite{Borozan2012} and the proper connection number of a connected graph GG equals 1 if and only if GG is a complete graph by the authors in \cite{Andrews2016, Borozan2012}, our motivation is to characterize 2-connected graphs which have proper connection number 2. First of all, we disprove Conjecture 3 in \cite{Borozan2012} by constructing classes of 2-connected graphs with minimum degree δ(G)≥3\delta(G)\geq3 that have proper connection number 3. Furthermore, we study sufficient conditions in terms of the ratio between the minimum degree and the order of a 2-connected graph GG implying that GG has proper connection number 2. These results are presented in Chapter 4 of the dissertation. In Chapter 5, we study proper connection number at most 2 of connected graphs in the terms of connectivity and forbidden induced subgraphs Si,j,kS_{i,j,k}, where i,j,ki,j,k are three integers and 0≤i≤j≤k0\leq i\leq j\leq k (where Si,j,kS_{i,j,k} is the graph consisting of three paths with i,ji,j and kk edges having an end-vertex in common). Recently, there are not so many results on the proper kk-connection number pck(G)pc_k(G), where k≥2k\geq2 is an integer. Hence, in Chapter 6, we consider the proper 2-connection number of several classes of connected graphs. We prove a new upper bound for pc2(G)pc_2(G) and determine several classes of connected graphs satisfying pc2(G)=2pc_2(G)=2. Among these are all graphs satisfying the Chv\'{a}tal and Erd\'{o}s condition (α(G)≤κ(G)\alpha({G})\leq\kappa(G) with two exceptions). We also study the relationship between proper 2-connection number pc2(G)pc_2(G) and proper connection number pc(G)pc(G) of the Cartesian product of two nontrivial connected graphs. In the last chapter of the dissertation, we propose some open problems of the proper connection number and the proper 2-connection number
    • …
    corecore