225 research outputs found

    ERAstar: A high-resolution ocean forcing product

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksTo address the growing demand for accurate high-resolution ocean wind forcing from the ocean modeling community, we develop a new forcing product, ERA*, by means of a geolocated scatterometer-based correction applied to the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis or ERA-interim (hereafter referred to as ERAi). This method successfully corrects for local wind vector biases present in the ERAi output globally. Several configurations of the ERA* are tested using complementary scatterometer data [advanced scatterometer (ASCAT)-A/B and oceansat-2 scatterometer (OSCAT)] accumulated over different temporal windows, verified against independent scatterometer data [HY-2A scatterometer (HSCAT)], and evaluated through spectral analysis to assess the geophysical consistency of the new stress equivalent wind fields (U10S). Due to the high quality of the scatterometer U10S, ERA* contains some of the physical processes missing or misrepresented in ERAi. Although the method is highly dependent on sampling, it shows potential, notably in the tropics. Short temporal windows are preferred, to avoid oversmoothing of the U10S fields. Thus, corrections based on increased scatterometer sampling (use of multiple scatterometers) are required to capture the detailed forcing errors. When verified against HSCAT, the ERA* configurations based on multiple scatterometers reduce the vector root-mean-square difference about 10% with respect to that of ERAi. ERA* also shows a significant increase in small-scale true wind variability, observed in the U10S spectral slopes. In particular, the ERA* spectral slopes consistently lay between those of HSCAT and ERAi, but closer to HSCAT, suggesting that ERA* effectively adds spatial scales of about 50 km, substantially smaller than those resolved by global numerical weather prediction (NWP) output over the open ocean (about 150 km).Peer ReviewedPostprint (author's final draft

    ASCAT pintatuulihavaintojen käyttökelpoisuus rajatun alueen sääennustemallissa

    Get PDF
    Sea-surface wind observations of previous generation scatterometers have been successfully assimilated into Numerical Weather Prediction (NWP) models. Impact studies conducted with these assimilation implementations have shown a distinct improvement to model analysis and forecast accuracies. The Advanced Scatterometer (ASCAT), flown on Metop-A, offers an improved sea-surface wind accuracy and better data coverage when compared to the previous generation scatterometers. Five individual case studies are carried out. The effect of including ASCAT data into High Resolution Limited Area Model (HIRLAM) assimilation system (4D-Var) is tested to be neutral-positive for situations with general flow direction from the Atlantic Ocean. For northerly flow regimes the effect is negative. This is later discussed to be caused by problems involving modeling northern flows, and also due to the lack of a suitable verification method. Suggestions and an example of an improved verification method is presented later on. A closer examination of a polar low evolution is also shown. It is found that the ASCAT assimilation scheme improves forecast of the initial evolution of the polar low, but the model advects the strong low pressure centre too fast eastward. Finally, the flaws of the implementation are found small and implementing the ASCAT assimilation scheme into the operational HIRLAM suite is feasible, but longer time period validation is still required.Edellisen sukupolven skatterometrien merenpinnan tuulihavaintoja on tuloksellisesti assimiloitu numeerisiin sääennustemalleihin. Näistä assimilaatiototeutuksista tehdyt vaikutustutkimukset ovat osoittaneet selviä parannuksia mallien analyysi- ja ennustetarkkuuksiin. Metop-A:n hyötykuormana oleva kehittynyt skatterometri (ASCAT) tarjoaa tarkempia havaintoja merenpintatuulista sekä kattaa mittauksillaan suuremman alueen edellisiin skatterometreihin verrattuna. ASCAT:in havaintojen assimilaatiota korkean resoluution rajatun alueen malliin (HIRLAM 4D-Var) tutkitaan viidessä erillisessä tapaustutkimuksessa. Vaikutuksen huomataan olevan neutraali-positiivinen tapauksille, joissa yleinen virtaussuunta on Atlantilta, mutta pohjoisille polaarivirtauksille vaikutuksen havaitaan olevan negatiivinen. Tämän päätellään johtuvan ongelmista pohjoisten virtausten mallintamisessa, mutta myös sopivien verifikaatiometodien puutteellisuudesta. Ehdotuksia sekä esimerkki verifikaatiometodien kehittämisestä esitellään myöhemmässä vaiheessa. Työssä tarkastellaan myös lähemmin polaarimatalatapausta. Tarkastelusta selviää, että ASCAT:in assimilaatio analyysijärjestelmään parantaa polaarimatalan alkukehityksen ennustetta, mutta mallin dynamiikka/fysiikka advektoi tämän voimakkaan matalapainekeskuksen liian nopeasti itään. Assimilaation toteutuksen viat havaitaan kuitenkin pieniksi ja ASCAT-havaintojen assimilaation operatiiviseen HIRLAM sääennustemalliin nähdään olevan toteuttamiskelpoinen, tosin pidemmän aikavälin validoinnin tarve nousee vielä esiin

    Development of high-resolution L4 ocean wind products

    Get PDF
    [eng] Heat, moisture, gas, and momentum exchanges at the oceanic and atmospheric interface modulate, inter alia, the Earth’s heat and carbon budgets, global circulation, and dynamical modes. Sea surface winds are fundamental to these exchanges and, as such, play a major role in the evolution and dynamics of the Earth’s climate. For ocean and atmospheric modeling purposes, and for their coupling, accurate sea-surface winds are therefore crucial to properly estimate these turbulent fluxes. Over the last decades, as numerical models became more sophisticated, the requirements for higher temporal and spatial resolution ocean forcing products grew. Sea surface winds from numerical weather prediction (NWP) models provide a convenient temporal and spatial coverage to force ocean models, and for that they are extensively used, e.g., the European Centre for Medium-range Weather Forecasts (ECMWF) latest reanalysis, ERA5, with ubiquitous hourly estimates of sea-surface wind available globally on a 30-km spatial grid. However, local systematic errors have been reported in global NWP fields using collocated scatterometer observations as reference. These rather persistent errors are associated with physical processes that are absent or misrepresented by the NWP models, e.g., strong current effects like the Western Boundary Current Systems (highly stationary), wind effects as- sociated with the oceanic mesoscale (sea surface temperature gradients), coastal effects (land see breezes, katabatic winds), Planetary Boundary Layer parameterization errors, and large-scale circulation effects, such as those associated with moist convection areas. In contrast, the ocean surface vector wind or wind stress derived from scatterometers, although intrinsically limited by temporal and spatial sampling, exhibits considerable spatial detail and accuracy. The latter has an effective resolution of 25 km while that of NWP models is of 150 km. Consequently, the biases between the two mostly represent the physical processes unresolved by NWP models. In this thesis, a high-resolution ocean surface wind forcing, the so-called ERAú, that combines the strengths of both the scatterometer observations and of the atmospheric model wind fields is created using a scatterometer-based local NWP wind vector model bias correction. ERAú stress equivalent wind (U10S) is generated by means of a geolocated scatterometer-based correction applied separately to two different ECMWF reanalyses, the nowadays obsolete ERA-interim (ERAi) and the most recent ERA5. Several ERAú configurations using complementary scatterometer data accumulated over different temporal windows (TW) are generated and verified against independent wind sources (scatterometer and moored buoys), through statistical and spectral analysis of spatial structures. The newly developed method successfully corrects for local wind vector biases in the reanalysis output, particularly in open ocean regions, by introducing the oceanic mesoscales captured by the scatterometers into the ERAi/ERA5 NWP reanalyses. However, the effectiveness of the method is intrinsically dependent on regional scatterometer sampling, wind variability and local bias persistence. The optimal ERAú uses multiple complementary scatterometers and a 3-day TW. Bias patterns are the same for ERAi and ERA5 SC to the reanalyses, though the latter shows smaller bias amplitudes and hence smaller error variance reduction differences in verification (up to 8% globally). However, because of ERA5 being more accurate than ERAi, ERAú derived from ERA5 turns out to be the highest quality product. ERAú ocean forcing does not enhance the sensitivity in global circulation models to highly localized transient events, however it improves large-scale ocean simulations, where large- scale corrections are relevant. Besides ocean forcing studies, the developed methodology can be further applied to improve scatterometer wind data assimilation by accounting for the persistent model biases. In addition, since the biases can be associated with misrepresented processes and parmeterizations, empirical predictors of these biases can be developed for use in forecasting and to improve the dynamical closure and parameterizations in coupled ocean-atmosphere models.[spa] Los vientos de la superficie del mar son fundamentales para estimar los flujos de calor y momento en la interfaz oceánica-atmosfera, ocupando un papel importante en la evolución y la dinámica del clima del planeta. Por tanto, en modelación (oceánica y atmosférica), vientos de calidad son cruciales para estimar adecuadamente estos flujos turbulentos. Vientos de la superficie del mar de salidas de modelos de predicción numérica del tiempo (NWP) proporcionan una cobertura temporal y espacial conveniente para forzar los modelos oceánicos, y todavía se utilizan ampliamente. Sin embargo, se han documentado errores sistemáticos locales en campos de NWP globales utilizando observaciones de dispersómetros co-ubicados como referencia (asociados con procesos físicos que ausentes o mal representados por los modelos). Al contrario, el viento de la superficie del mar derivado de los dispersómetros, aunque intrínsecamente limitado por el muestreo temporal y espacial, presenta una precisión y un detalle espacial considerables. Consecuentemente, los sesgos entre los dos representan principalmente los procesos físicos no resueltos por los modelos NWP. En esta tesis, se crea un producto de forzamiento del viento en la superficie del océano de alta resolución, el ERAú. ERAú se genera con una corrección media basada en diferencias geolocalizadas entre dispersometro y modelo, aplicadas por separado a dos reanálisis diferentes, el ERA-interim (ERAi) y el ERA5. Varias configuraciones de ERAú utilizando datos de dispersómetros complementarios acumulados en diferentes ventanas tempo- rales (TW) se generan y validan frente a datos de viento independientes, a través de análisis estadísticos y espectrales de estructuras espaciales. El método corrige con éxito los sesgos del vector de viento local de la reanálisis. Sin embargo, su eficacia depende del muestreo del dispersómetro regional, la variabilidad del viento y la persistencia del sesgo local. El ERAú óptimo utiliza múltiples dispersómetros complementarios y un TW de 3 días. Las dos reanálisis muestran los mismos patrones de sesgo en la SC, debido a que ERA5 es más preciso que ERAi, ERAú derivado de ERA5 es el producto de mayor calidad. El forzamiento oceánico ERAú mejora las simulaciones oceánicas a gran escala, donde las correcciones a gran escala son relevantes

    On mesoscale analysis and ASCAT ambiguity removal

    Get PDF
    45 pages, 17 figures, 7 tablesIn the so-called two-dimensional variational ambiguity removal (2DVAR) scheme [Vogelzanget al., 2010], the scatterometer observations and the model background (fromthe European Centre for Medium-range Weather Forecasts, ECMWF) are combined using a two-dimensional variational approach, similar to that used in meteorological data assimilation, to provide an analyzed wind field. Since scatterometers provide unique mesoscale information on the wind field, mesoscale analysis is a common challenge for 2DVAR and for mesoscale data assimilation in 4D-var or 3D-var, such as applied using the Integrated Forecasting System (IFS) at ECMWF, Meteo France or in the HIRLAM project (www.hirlam.org). This study elaborates on the common problem of specifying the observation and background error covariances in data assimilationThis documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 29 June 2011, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo FrancePeer Reviewe

    Operational assimilation of ASCAT surface soil wetness at the Met Office

    Get PDF
    Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) on the meteorological operational (MetOp) satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010

    NWP Activities at AEMET (Spain): 41th EWGLAM & 26th SRNWP Meetings

    Get PDF
    Póster presentado en: 41th EWGLAM & 26th SRNWP Meetings, celebrado del 30 de septiembre al 3 de octubre de 2019 en Sofia (Bulgaria)

    EPS/Metop-SG Scatterometer Mission Science Plan

    Get PDF
    89 pages, figures, tablesThis Science Plan describes the heritage, background, processing and control of C-band scatterometer data and its remaining exploitation challenges in view of SCA on EPS/MetOp-SGPeer reviewe

    European Capacity for Monitoring and Assimilating Space-based Climate Change Observations - Status and Prospects

    Get PDF
    This report, which is based on the findings of a workshop at Ispra in March 2009, provides the scientific background to a forthcoming Commission response to the Space and Competitiveness councils requests that the commission assess the needs for full access to standardised climate change data, the means to provide these data and together with ESA, EUMETSAT and the scientific community define how GMES services can contribute effectively to providing these data. The report therefore focuses primarily, but not exclusively, on space-based Climate data sources. Standardised climate data are needed for climate monitoring, prediction and research, while climate information informs the policy cycle at four key points - Policy definition; Management and scenario building; Reporting requirements; Alarm functions. The workshop identified the 44 Essential Climate Variables defined by GCOS as the minimum set of standardised climate data that the commission should be considering and a gap analysis for the provision of these observations was undertaken. In addition European capacity is analysed according to maturity, differentiating between sustained operational capacity (Envelope Missions/EUMETSAT), non-operationally funded repetitive capacity and additional infrastructure needs in order to fill the gaps are identified. Finally the report discusses co-ordination and governance issues and how to overcome them. The key findings and recommendations are contained in an executive summary.JRC.DDG.H.2-Climate chang
    corecore