6,951 research outputs found

    A family of mixed graphs with large order and diameter 2

    Get PDF
    A mixed regular graph is a connected simple graph in which each vertex has both a fixed outdegree (the same indegree) and a fixed undirected degree. A mixed regular graphs is said to be optimal if there is not a mixed regular graph with the same parameters and bigger order. We present a construction that provides mixed graphs of undirected degree qq, directed degree View the MathML sourceq-12 and order 2q22q2, for qq being an odd prime power. Since the Moore bound for a mixed graph with these parameters is equal to View the MathML source9q2-4q+34 the defect of these mixed graphs is View the MathML source(q-22)2-14. In particular we obtain a known mixed Moore graph of order 1818, undirected degree 33 and directed degree 11 called Bosák’s graph and a new mixed graph of order 5050, undirected degree 55 and directed degree 22, which is proved to be optimal.Peer ReviewedPostprint (author's final draft

    On hardware for generating routes in Kautz digraphs

    Get PDF
    In this paper we present a hardware implementation of an algorithm for generating node disjoint routes in a Kautz network. Kautz networks are based on a family of digraphs described by W.H. Kautz[Kautz 68]. A Kautz network with in-degree and out-degree d has N = dk + dk¿1 nodes (for any cardinals d, k>0). The diameter is at most k, the degree is fixed and independent of the network size. Moreover, it is fault-tolerant, the connectivity is d and the mapping of standard computation graphs such as a linear array, a ring and a tree on a Kautz network is straightforward.\ud The network has a simple routing mechanism, even when nodes or links are faulty. Imase et al. [Imase 86] showed the existence of d node disjoint paths between any pair of vertices. In Smit et al. [Smit 91] an algorithm is described that generates d node disjoint routes between two arbitrary nodes in the network. In this paper we present a simple and fast hardware implementation of this algorithm. It can be realized with standard components (Field Programmable Gate Arrays)

    Quantum Fourier sampling, Code Equivalence, and the quantum security of the McEliece and Sidelnikov cryptosystems

    Full text link
    The Code Equivalence problem is that of determining whether two given linear codes are equivalent to each other up to a permutation of the coordinates. This problem has a direct reduction to a nonabelian hidden subgroup problem (HSP), suggesting a possible quantum algorithm analogous to Shor's algorithms for factoring or discrete log. However, we recently showed that in many cases of interest---including Goppa codes---solving this case of the HSP requires rich, entangled measurements. Thus, solving these cases of Code Equivalence via Fourier sampling appears to be out of reach of current families of quantum algorithms. Code equivalence is directly related to the security of McEliece-type cryptosystems in the case where the private code is known to the adversary. However, for many codes the support splitting algorithm of Sendrier provides a classical attack in this case. We revisit the claims of our previous article in the light of these classical attacks, and discuss the particular case of the Sidelnikov cryptosystem, which is based on Reed-Muller codes

    Edge Label Inference in Generalized Stochastic Block Models: from Spectral Theory to Impossibility Results

    Get PDF
    The classical setting of community detection consists of networks exhibiting a clustered structure. To more accurately model real systems we consider a class of networks (i) whose edges may carry labels and (ii) which may lack a clustered structure. Specifically we assume that nodes possess latent attributes drawn from a general compact space and edges between two nodes are randomly generated and labeled according to some unknown distribution as a function of their latent attributes. Our goal is then to infer the edge label distributions from a partially observed network. We propose a computationally efficient spectral algorithm and show it allows for asymptotically correct inference when the average node degree could be as low as logarithmic in the total number of nodes. Conversely, if the average node degree is below a specific constant threshold, we show that no algorithm can achieve better inference than guessing without using the observations. As a byproduct of our analysis, we show that our model provides a general procedure to construct random graph models with a spectrum asymptotic to a pre-specified eigenvalue distribution such as a power-law distribution.Comment: 17 page

    Community detection and stochastic block models: recent developments

    Full text link
    The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences. This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds. The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed

    On (4,2)-digraph Containing a Cycle of Length 2

    Get PDF
    A diregular digraph is a digraph with the in-degree and out-degree of all vertices is constant. The Moore bound for a diregular digraph of degree d and diameter k is M_{d,k}=l+d+d^2+...+d^k. It is well known that diregular digraphs of order M_{d,k}, degree d>l tnd diameter k>l do not exist . A (d,k) -digraph is a diregular digraph of degree d>1, diameter k>1, and number of vertices one less than the Moore bound. For degrees d=2 and 3,it has been shown that for diameter k >= 3 there are no such (d,k)-digraphs. However for diameter 2, it is known that (d,2)-digraphs do exist for any degree d. The line digraph of K_{d+1} is one example of such (42)-digraphs. Furthermore, the recent study showed that there are three non-isomorphic(2,2)-digraphs and exactly one non-isomorphic (3,2)-digraph. In this paper, we shall study (4,2)-digraphs. We show that if (4,2)-digraph G contains a cycle of length 2 then G must be the line digraph of a complete digraph K_5

    Quantum walks on Cayley graphs

    Full text link
    We address the problem of the construction of quantum walks on Cayley graphs. Our main motivation is the relationship between quantum algorithms and quantum walks. In particular, we discuss the choice of the dimension of the local Hilbert space and consider various classes of graphs on which the structure of quantum walks may differ. We completely characterise quantum walks on free groups and present partial results on more general cases. Some examples are given, including a family of quantum walks on the hypercube involving a Clifford Algebra.Comment: J. Phys. A (accepted for publication

    On Total Regularity of Mixed Graphs with Order Close to the Moore Bound

    Get PDF
    The undirected degree/diameter and degree/girth problems and their directed analogues have been studied for many decades in the search for efficient network topologies. Recently such questions have received much attention in the setting of mixed graphs, i.e. networks that admit both undirected edges and directed arcs. The degree/diameter problem for mixed graphs asks for the largest possible order of a network with diameter kk, maximum undirected degree r\leq r and maximum directed out-degree z\leq z. Similarly one can search for the smallest possible kk-geodetic mixed graphs with minimum undirected degree r\geq r and minimum directed out-degree z\geq z. A simple counting argument reveals the existence of a natural bound, the Moore bound, on the order of such graphs; a graph that meets this limit is a mixed Moore graph. Mixed Moore graphs can exist only for k=2k = 2 and even in this case it is known that they are extremely rare. It is therefore of interest to search for graphs with order one away from the Moore bound. Such graphs must be out-regular; a much more difficult question is whether they must be totally regular. For k=2k = 2, we answer this question in the affirmative, thereby resolving an open problem stated in a recent paper of Lopez and Miret. We also present partial results for larger kk. We finally put these results to practical use by proving the uniqueness of a 2-geodetic mixed graph with order exceeding the Moore bound by one
    corecore