6 research outputs found

    Indium-Gallium-Zinc Oxide Thin-Film Transistors for Active-Matrix Flat-Panel Displays

    Get PDF
    Amorphous oxide semiconductors (AOSs) including amorphous InGaZnO (a-IGZO) areexpected to be used as the thin-film semiconducting materials for TFTs in the next-generation ultra-high definition (UHD) active-matrix flat-panel displays (AM-FPDs). a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays (OLEDs), large and fast liquid crystal displays (LCDs) as well as three-dimensional (3D) displays, which cannot be satisfied using conventional amorphous silicon (a-Si) or polysilicon (poly-Si) TFTs. In particular, a-IGZO TFTs satisfy two significant requirements of the backplane technology: high field-effect mobility and large-area uniformity.In this work, a robust process for fabrication of bottom-gate and top-gate a-IGZO TFTs is presented. An analytical drain current model for a-IGZO TFTs is proposed and its validation is demonstrated through experimental results. The instability mechanisms in a-IGZO TFTs under high current stress is investigated through low-frequency noise measurements. For the first time, the effect of engineered glass surface on the performance and reliability of bottom-gate a-IGZO TFTs is reported. The effect of source and drain metal contacts on electrical properties of a-IGZO TFTs including their effective channel lengths is studied. In particular, a-IGZO TFTs with Molybdenum versus Titanium source and drain electrodes are investigated. Finally, the potential of aluminum substrates for use in flexible display applications is demonstrated by fabrication of high performance a-IGZO TFTs on aluminum substrates and investigation of their stability under high current electrical stress as well as tensile and compressive strain

    A study of polycrystalline MgZnO/ZnO thin-film transistor using the RF magnetron co-sputtering method

    Get PDF
    ์ตœ๊ทผ ZnO ๊ธฐ๋ฐ˜์˜ ํŠธ๋žœ์ง€์Šคํ„ฐ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰์ด ๋˜๊ณ  ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ด์œ ๋Š” ์ €์˜จ ์„ฑ์žฅ๋œ ๋ฐ•๋ง‰์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  1 cm2/Vs ์ด์ƒ์˜ ๋†’์€ ์ด๋™๋„๋ฅผ ๊ฐ€์ง€๋ฉฐ, ๊ฐ€์‹œ๊ด‘์˜์—ญ์—์„œ ๋†’์€ ๊ด‘ ํˆฌ๊ณผ์„ฑ์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์„ฑ๋Šฅ์˜ ํˆฌ๋ช…์ „์ž์†Œ์ž ๊ฐœ๋ฐœ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ZnO ๋ฌผ์งˆ์€ ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ, ๋ฐœ๊ด‘์†Œ์ž, ํˆฌ๋ช…์ „๊ทน, ์ˆ˜๊ด‘์†Œ์ž, ๊ฐ€์Šค์„ผ์„œ, ํƒœ์–‘์ „์ง€ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์–‘์— ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋‹ค์–‘ํ•œ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•œ ์ด์œ ๋Š” ZnO๊ฐ€ ๊ฐ€์ง€๋Š” ์šฐ์ˆ˜ํ•œ ๋ฌผ์„ฑ ๋•Œ๋ฌธ์ด๋‹ค. ZnO ๋Š” 3.37 eV ์˜ ๊ด‘๋ฐด๋“œ๊ฐญ์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์‹œ๊ด‘์˜์—ญ์—์„œ ํˆฌ๋ช…ํ•˜๋‹ค. ๋˜ํ•œ Mg์ด ZnO์— ํ•ฉ๊ธˆ๋  ๊ฒฝ์šฐ ๊ด‘๋ฐด๋“œ๊ฐญ์ด ๋Š˜์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์— UV ์˜์—ญ๊นŒ์ง€ ๋ฐœ๊ด‘์†Œ์ž ๋ฐ ์ˆ˜๊ด‘์†Œ์ž๋กœ์จ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ์ƒ์˜จ์—์„œ 60 meV์˜ ์—ฌ๊ธฐ์ž ๊ฒฐํ•ฉ์—๋„ˆ์ง€๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ง์ ‘์ฒœ์ดํ˜• ๋ฐด๋“œ๊ฐญ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ฐœ๊ด‘์†Œ์ž์— ํฐ ๊ฐ๊ด‘์„ ๋ฐ›๋Š” ๋ฌผ์งˆ์ด๋‹ค. ๋˜ํ•œ ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ์—๋„ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ๊ธฐ์กด์˜ ๋น„์ •์งˆ ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜์˜ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋ฐฑํ”Œ๋ ˆ์ธ ์†Œ์ž๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰์ด ๋˜๊ณ  ์žˆ๋‹ค. ํ‰ํŒํ˜• ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ๋Œ€๋ฉด์ ํ™” ๊ณ ํ•ด์ƒ๋„, ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋น ๋ฅธ ์ฃผํŒŒ์ˆ˜๋ฅผ ์š”๊ตฌํ•จ์— ๋”ฐ๋ผ ๊ธฐ์กด์˜ ๋น„์ •์งˆ์‹ค๋ฆฌ์ฝ˜์˜ ์ด๋™๋„๋กœ๋Š” ํ•œ๊ณ„์— ๋„๋‹ฌํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด LTPS (low-temperature polycrystalline silicon)์ด ํ•„์š”๋กœ ํ•˜๋‚˜ ๋ ˆ์ด์ € ์—ด์ฒ˜๋ฆฌ๋“ฑ์˜ ํ›„์† ๊ณต์ •์ด ํ•„์š”๋กœ ํ•˜๊ฒŒ ๋˜์–ด ๊ณต์ •๋‹จ๊ฐ€๊ฐ€ ์ƒ์Šนํ•˜๋ฉฐ, ๋Œ€๋ฉด์ ํ™”์— ๋ฌธ์ œ๊ฐ€ ์ œ๊ธฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํ•˜์ง€๋งŒ ZnO ๋ฐ•๋ง‰์€ ์ €์˜จ ์„ฑ์žฅํ•œ ๋ฐ•๋ง‰์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ธฐ์กด์˜ ๋น„์ •์งˆ ์‹ค๋ฆฌ์ฝ˜์˜ ์ด๋™๋„๋ฅผ ๋„˜์œผ๋ฉฐ, ๊ณต์ •๋‹จ๊ฐ€ ๋˜ํ•œ LTPS ๊ณต์ •๋ณด๋‹ค ์ €๋ ดํ•˜๋ฉฐ, ๊ธฐ์กด์˜ ๋น„์ •์งˆ ์‹ค๋ฆฌ์ฝ˜๊ณต์ • ๊ธฐ๋ฐ˜์‹œ์„ค์„ ์ด์šฉํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฐํ™”๋ฌผ ๊ธฐ๋ฐ˜์˜ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋ฐฑํ”Œ๋ ˆ์ธ์šฉ ์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ZnO ๊ธฐ๋ฐ˜์˜ ์ „์ž์†Œ์ž๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธˆ์†๊ณผ ๋ฐ˜๋„์ฒด ํŠน์„ฑ์— ๋Œ€ํ•œ์—ฐ๊ตฌ, ๋ฐ˜๋„์ฒด ๋ฌผ์งˆ์˜ ๊ตฌ์กฐ์  ๋ฐ ์กฐ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ, ๋˜ํ•œ ์ ˆ์—ฐ์ฒด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”๋กœ ํ•˜๋‹ค. ๋˜ํ•œ ZnO ๊ธฐ๋ฐ˜์˜ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์Šค์œ„์นญ ์†Œ์ž๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์—๋Š” MISFET (metal-insulator-semiconductor field effect transistor) ์œผ๋กœ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋ฐฑํ”Œ๋ ˆ์ธ ์†Œ์ž๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋†’์€ ์ด๋™๋„, ๋‚ฎ์€ subthreshold swing, ํ•ด์ƒ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋†’์€ ON์ „๋ฅ˜ ๋ฐ ์ „๋ ฅ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•œ ๋‚ฎ์€ OFF์ „๋ฅ˜๋ฅผ ๊ฐ€์ง€๋Š” ์†Œ์ž๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. MISFET ์†Œ์ž์˜ ๊ฒฝ์šฐ ์ ˆ์—ฐ์ฒด์ธต์ด ํ•„์š”๋กœ ํ•˜๋‹ค. ์ ˆ์—ฐ์ฒด์ธต์˜ ํŠน์„ฑ์š”๊ตฌ ์กฐ๊ฑด์œผ๋กœ๋Š” ๋‚ฎ์€ ์ „์••์—์„œ ์ž‘๋™๊ฐ€๋Šฅํ•˜๊ธฐ ์œ„ํ•ด ๋†’์€ ์œ ์ „์œจ ์ƒ์ˆ˜๋ฅผ ๊ฐ€์ ธ์•ผ ํ•˜๋ฉฐ, ๋˜ํ•œ ๋‚ฎ์€ ๋ˆ„์„ค์ „๋ฅ˜๋ฅผ ๊ฐ€์ง€๋ฉฐ ํ”ผ๋กœํŒŒ๊ดด์ „์••์— ๋†’์€ ์ €ํ•ญ์„ฑ์„ ๊ฐ€์ง€๋Š” ๋ฌผ์งˆํŠน์„ฑ์ด ์š”๊ตฌ ๋œ๋‹ค. ๋˜ํ•œ ๋ฐ˜๋„์ฒด์— ์บ๋ฆฌ์–ด๋ฅผ ์ฃผ์ž…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์˜ค๋ฏน์ ‘ํ•ฉ ํŠน์„ฑ์ด ํ•„์š”๋กœ ํ•˜๋‹ค. ๋ฐ˜๋„์ฒด ์ธต ๋ฌผ์งˆ๋กœ์จ๋Š” ZnO์— Mg์ด ์ฒจ๊ฐ€๋  ๊ฒฝ์šฐ ๋ฐด๋“œ๊ฐญ ์ฆ๊ฐ€ ๋ฐ ์ž์œ ์ „์ž์˜ ์บ๋ฆฌ์–ด๋ฅผ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. MgZnO์˜ ๊ฒฝ์šฐ ZnO ๊ธฐ๋ฐ˜์˜ ์‚ฐํ™”๋ฌผ๋ฐ˜๋„์ฒด์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฐ์†Œ๊ณต๊ณต์— ์˜ํ•ด ์•ผ๊ธฐ๋˜๋Š” ์†Œ์ž์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด์™€ ๊ฐ™์€ ์ด์œ ๋Š” Zn-O ๊ฒฐํ•ฉ ๋ณด๋‹ค Mg-O ๊ฒฐํ•ฉ์—๋„ˆ์ง€๊ฐ€ ๋” ๊ฐ•ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‚ฐ์†Œ๊ณต๊ณต๊ณผ ๊ฐ™์€ ๊ฒฐํ•จ ์ƒ์„ฑ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ZnO ์™€ MgZnO ์˜ ์ด์ข…์ ‘ํ•ฉ์‹œ์—๋Š” ์ ‘ํ•ฉ ๊ฒฝ๊ณ„๋ฉด์— ๋†’์€ ์ „์ž ๋ฐ€๋„๋ฅผ ํ˜•์„ฑ์ด ๊ฐ€๋Šฅํ•˜์—ฌ ๋น ๋ฅธ ์ „์ž์ด๋™๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ „์ž์†Œ์ž์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ ์˜ฌ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ZnO ์™€ MgxZn1-xO๋ฅผ ์ด์šฉํ•œ ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ์— ๋Œ€ํ•ด์„œ ์—ฐ๊ตฌ ํ•˜์˜€๋‹ค. Mg0.3Zn0.7O์™€ ์˜ค๋ฏน์ ‘ํ•ฉ์„ ์–ป๊ธฐ Ni/Au ์™€ Ti/Au ๋ฌผ์งˆ์„ ์‚ฌ์šฉํ•˜์—ฌ Mg0.3Zn0.7O ๋ฐ•๋ง‰๊ณผ ์˜ค๋ฏน์ ‘ํ•ฉ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ 97.6 ฮฉยทcm2 ์˜ ์ ‘์ด‰๋น„์ €ํ•ญ์„ ์–ป์—ˆ๋‹ค. ZnO ๋ฐ•๋ง‰์— Mg ํ•ฉ๊ธˆ ๋น„์œจ์ด 1 ๊ณผ 10 at.% ๋ฐ•๋ง‰์„ ์ฆ์ฐฉํ•˜์—ฌ MgxZn1-xO ๋‹จ์ผ ์ฑ„๋„์„ ๊ฐ€์ง€๋Š” ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, MgxZn1-xO-TFT ์˜ ์†Œ์ž ํ‰๊ฐ€๊ฐ€ ์ด๋ฃจ์–ด ์กŒ๋‹ค. Mg ์ฒจ๊ฐ€๋Ÿ‰์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ MgxZn1-xO-TFT์˜ ์ด๋™๋„๋Š” ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, SS ๊ฐ’๋„ ZnO์— ๋น„ํ•ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ZnO์™€ MgxZn1-xO ์ด์ข…์ ‘ํ•ฉ ๋ฐ•๋ง‰ํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, ZnO ๋ฐ•๋ง‰์˜ ๋‘๊ป˜์— ๋”ฐ๋ฅธ ์†Œ์ž ํ‰๊ฐ€๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค. MgxZn1-xO/ZnO TFT๋Š” ZnO-TFT ๋ณด๋‹ค ๋น ๋ฅธ ์ด๋™๋„๋ฅผ ๊ฐ€์ง€๋ฉฐ, ๋‚ฎ์€ SS ๊ฐ’์„ ๊ฐ€์ง€๋Š” ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. MgxZn1-xO/ZnO TFT์—์„œ ZnO ๋ฐ•๋ง‰์˜ ๋‘๊ป˜๋Š” ~10 nm ์ผ ๋•Œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ZnO, MgxZn1-xO, MgxZn1-xO/ZnO TFT์˜ ๊ฒŒ์ดํŠธ ๋ฐ”์ด์–ด์Šค ์ŠคํŠธ๋ ˆ์Šค ์ธก์ • ๋ฐ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ์ธก์ •์„ ํ†ตํ•ด ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ์„ ํ‰๊ฐ€ ํ•˜์˜€๋‹ค. MgxZn1-xO/ZnO TFT ์ด์ข…์ ‘ํ•ฉ์œผ๋กœ ์ œ์ž‘๋œ ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ๊ฒŒ์ดํŠธ ๋ฐ”์ด์–ด์Šค ์ŠคํŠธ๋ ˆ์Šค ์‹คํ—˜์—์„œ ZnO ์†Œ์ž๋ณด๋‹ค ๋‚ฎ์€ ์ „๋ฅ˜ ์ด๋™ํŠน์„ฑ ๋ฐ ๋‚ฎ์€ ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค ํญ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ MgO๋ฐ•๋ง‰์„ ์ ˆ์—ฐ์ฒด๋กœ ํ•˜๋Š” ZnO ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ œ์ž‘ ํ•˜์˜€๋‹ค. MgO ๊ฒฝ์šฐ 9.8์˜ ์œ ์ „์ฒด ์ƒ์ˆ˜๋ฅผ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ € ์ „๋ ฅ์˜ ์†Œ์ž๋กœ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. MgO ๊ฒฝ์šฐ ์ฆ์ฐฉ ์ค‘ ์‚ฐ์†Œ๋ถ„์œ„๊ธฐ ๋น„์œจ์„ ๋‹ฌ๋ฆฌ ํ•˜์—ฌ ์ฆ์ฐฉํ•˜์˜€์œผ๋ฉฐ, ์‚ฐ์†Œ ๋ถ„์œ„๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์œ ์ „์ฒด ์ƒ์ˆ˜๊ฐ€ 11.35 ๊นŒ์ง€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•˜์˜€๋‹ค.List of Tables List of Figures Abstract Chapter 1. Introduction 1.1 Oxide TFT application 1.2 Comparison of Oxide-based TFT with Si-based TFT 1.3 Metal oxide material 1.4 Physical properties of ZnO and MgO 1.5 Application of ZnO 1.6 Properties of MgZnO 1.7 Heterostructure of MgZnO/ZnO thin films 1.8 Evaluation of mobility for MISFET 1.9 TFT structures and princess Chapter 2. MgZnO and MgxZn1-xO/ZnO MISFET 2.1 Experiment method 2.1.1 Deposition of ZnO and MgxZn1-xO thin films 2.1.2 Fabrication of TFT devices 2.2 Results and discussion 2.2.1 Evaluation of MgZnO thin films 2.2.1.1 Structure properties 2.2.1.2 Optical properties 2.2.1.3 Electrical properties 2.2.2 Ohmic Contact of MgZnO 2.2.2.1 Motivation 2.2.2.2 Experimental detail 2.2.2.3 Results and Discussion 2.2.2.4 Conclusion 2.2.3 Single channel layer of MgZnO MISFET 2.2.3.1 Motivation 2.2.3.2 Experimental detail 2.2.3.3 Results and Discussion 2.2.3.4 Conclusion 2.2.4 Heterostructure of MgZnO/ZnO-MISFET 2.2.4.1 Motivation 2.2.4.2 Experimental detail 2.2.4.3 Results and Discussion 2.2.4.4 Conclusion 2.2.5 Stability properties of MgZnO TFT and MgxZn1-xO/ZnO TFT 2.2.5.1 Hysteresis properties 2.2.5.2 Positive gate bias stress Chapter 3. MgO Insulator 3.1 Study of TFTs by using a MgO insulator 3.1.1 Motivation 3.1.2 Experimental detail 3.1.3 Results and Discussion 3.1.4 Conclusion Chapter 4. Summary & Conclusion Referenc

    Recent Advances in Thin Film Electronic Devices

    Get PDF
    This reprint is a collection of the papers from the Special Issue โ€œRecent Advances in Thin Film Electronic Devicesโ€ in Micromachines. In this reprrint, 1 editorial and 11 original papers about recent advances in the research and development of thin film electronic devices are included. Specifically, three research fields are covered: device fundamentals (5 papers), fabrication processes (5 papers), and testing methods (1 paper). The experimental data, simulation results, and theoretical analysis presented in this reprint should benefit those researchers in flat panel displays, flat panel sensors, energy devices, memories, and so on

    Amorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displays

    Get PDF
    Hydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (โˆ†Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level โˆ†Vt simulation. Besides, a โˆ†Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The โˆ†Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a โˆ†Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.4 month

    Amorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displays

    Get PDF
    Hydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (โˆ†Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level โˆ†Vt simulation. Besides, a โˆ†Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The โˆ†Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a โˆ†Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.4 month
    corecore