19,154 research outputs found

    Robust Mission Design Through Evidence Theory and Multi-Agent Collaborative Search

    Full text link
    In this paper, the preliminary design of a space mission is approached introducing uncertainties on the design parameters and formulating the resulting reliable design problem as a multiobjective optimization problem. Uncertainties are modelled through evidence theory and the belief, or credibility, in the successful achievement of mission goals is maximised along with the reliability of constraint satisfaction. The multiobjective optimisation problem is solved through a novel algorithm based on the collaboration of a population of agents in search for the set of highly reliable solutions. Two typical problems in mission analysis are used to illustrate the proposed methodology

    Decomposition, Reformulation, and Diving in University Course Timetabling

    Full text link
    In many real-life optimisation problems, there are multiple interacting components in a solution. For example, different components might specify assignments to different kinds of resource. Often, each component is associated with different sets of soft constraints, and so with different measures of soft constraint violation. The goal is then to minimise a linear combination of such measures. This paper studies an approach to such problems, which can be thought of as multiphase exploitation of multiple objective-/value-restricted submodels. In this approach, only one computationally difficult component of a problem and the associated subset of objectives is considered at first. This produces partial solutions, which define interesting neighbourhoods in the search space of the complete problem. Often, it is possible to pick the initial component so that variable aggregation can be performed at the first stage, and the neighbourhoods to be explored next are guaranteed to contain feasible solutions. Using integer programming, it is then easy to implement heuristics producing solutions with bounds on their quality. Our study is performed on a university course timetabling problem used in the 2007 International Timetabling Competition, also known as the Udine Course Timetabling Problem. In the proposed heuristic, an objective-restricted neighbourhood generator produces assignments of periods to events, with decreasing numbers of violations of two period-related soft constraints. Those are relaxed into assignments of events to days, which define neighbourhoods that are easier to search with respect to all four soft constraints. Integer programming formulations for all subproblems are given and evaluated using ILOG CPLEX 11. The wider applicability of this approach is analysed and discussed.Comment: 45 pages, 7 figures. Improved typesetting of figures and table

    Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing

    Full text link
    Nonnegative matrix factorization (NMF) has become a very popular technique in machine learning because it automatically extracts meaningful features through a sparse and part-based representation. However, NMF has the drawback of being highly ill-posed, that is, there typically exist many different but equivalent factorizations. In this paper, we introduce a completely new way to obtaining more well-posed NMF problems whose solutions are sparser. Our technique is based on the preprocessing of the nonnegative input data matrix, and relies on the theory of M-matrices and the geometric interpretation of NMF. This approach provably leads to optimal and sparse solutions under the separability assumption of Donoho and Stodden (NIPS, 2003), and, for rank-three matrices, makes the number of exact factorizations finite. We illustrate the effectiveness of our technique on several image datasets.Comment: 34 pages, 11 figure

    Recent Advances in Computational Methods for the Power Flow Equations

    Get PDF
    The power flow equations are at the core of most of the computations for designing and operating electric power systems. The power flow equations are a system of multivariate nonlinear equations which relate the power injections and voltages in a power system. A plethora of methods have been devised to solve these equations, starting from Newton-based methods to homotopy continuation and other optimization-based methods. While many of these methods often efficiently find a high-voltage, stable solution due to its large basin of attraction, most of the methods struggle to find low-voltage solutions which play significant role in certain stability-related computations. While we do not claim to have exhausted the existing literature on all related methods, this tutorial paper introduces some of the recent advances in methods for solving power flow equations to the wider power systems community as well as bringing attention from the computational mathematics and optimization communities to the power systems problems. After briefly reviewing some of the traditional computational methods used to solve the power flow equations, we focus on three emerging methods: the numerical polynomial homotopy continuation method, Groebner basis techniques, and moment/sum-of-squares relaxations using semidefinite programming. In passing, we also emphasize the importance of an upper bound on the number of solutions of the power flow equations and review the current status of research in this direction.Comment: 13 pages, 2 figures. Submitted to the Tutorial Session at IEEE 2016 American Control Conferenc

    Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

    Get PDF
    Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling
    • …
    corecore