121,522 research outputs found

    Modeling the Effect of a Road Construction Project on Transportation System Performance

    Get PDF
    Road construction projects create physical changes on roads that result in capacity reduction and travel time escalation during the construction project period. The reduction in the posted speed limit, the number of lanes, lane width and shoulder width at the construction zone makes it difficult for the road to accommodate high traffic volume. Therefore, the goal of this research is to model the effect of a road construction project on travel time at road link-level and help improve the mobility of people and goods through dissemination or implementation of proactive solutions. Data for a resurfacing construction project on I-485 in the city of Charlotte, North Carolina (NC) was used evaluation, analysis, and modeling. A statistical t-test was conducted to examine the relationship between the change in travel time before and during the construction project period. Further, travel time models were developed for the freeway links and the connecting arterial street links, both before and during the construction project period. The road network characteristics of each link, such as the volume/ capacity (V/C), the number of lanes, the speed limit, the shoulder width, the lane width, whether the link is divided or undivided, characteristics of neighboring links, the time-of-the-day, the day-of-the-week, and the distance of the link from the road construction project were considered as predictor variables for modeling. The results obtained indicate that a decrease in travel time was observed during the construction project period on the freeway links when compared to the before construction project period. Contrarily, an increase in travel time was observed during the construction project period on the connecting arterial street links when compared to the before construction project period. Also, the average travel time, the planning time, and the travel time index can better explain the effect of a road construction project on transportation system performance when compared to the planning time index and the buffer time index. The influence of predictor variables seem to vary before and during the construction project period on the freeway links and connecting arterial street links. Practitioners should take the research findings into consideration, in addition to the construction zone characteristics, when planning a road construction project and developing temporary traffic control and detour plans

    Network effects of intelligent speed adaptation systems

    Get PDF
    Intelligent Speed Adaptation (ISA) systems use in-vehicle electronic devices to enable the speed of vehicles to be regulated externally. They are increasingly appreciated as a flexible method for speed management and control, particularly in urban areas. On-road trials using a small numbers of ISA equipped vehicles have been carried out in Sweden, the Netherlands, Spain and the UK. This paper describes the developments made to enhance a traffic microsimulation model in order to represent ISA implemented across a network and their impact on the networks. The simulation modelling of the control system is carried out on a real-world urban network, and the impacts on traffic congestion, speed distribution and the environment assessed. The results show that ISA systems are more effective in less congested traffic conditions. Momentary high speeds in traffic are effectively suppressed, resulting in a reduction in speed variation which is likely to have a positive impact on safety. Whilst ISA reduces excessive traffic speeds in the network, it does not affect average journey times. In particular, the total vehicle-hours travelling at speeds below 10 km/hr have not changed, indicating that the speed control had not induced more slow-moving queues to the network. A significant, eight percent, reduction in fuel consumption was found with full ISA penetration. These results are in accordance with those from field trials and they provide the basis for cost-benefit analyses on introducing ISA into the vehicle fleet. Contrary to earlier findings from the Swedish ISA road trials, these network simulations showed that ISA had no significant effect on emission of gaseous pollutants CO, NOx and HC. Further research is planned to investigate the impact on emission with a more comprehensive and up to date modal emission factor database

    Exact asymptotics for fluid queues fed by multiple heavy-tailed on-off flows

    Get PDF
    We consider a fluid queue fed by multiple On-Off flows with heavy-tailed (regularly varying) On periods. Under fairly mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a reduced system. The reduced system consists of a ``dominant'' subset of the flows, with the original service rate subtracted by the mean rate of the other flows. We describe how a dominant set may be determined from a simple knapsack formulation. The dominant set consists of a ``minimally critical'' set of On-Off flows with regularly varying On periods. In case the dominant set contains just a single On-Off flow, the exact asymptotics for the reduced system follow from known results. For the case of several On-Off flows, we exploit a powerful intuitive argument to obtain the exact asymptotics. Combined with the reduced-load equivalence, the results for the reduced system provide a characterization of the tail of the workload distribution for a wide range of traffic scenarios

    GPS queues with heterogeneous traffic classes

    Get PDF
    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behavior of the light-tailed class for the situation where its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed class served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is in fact asymptotically equivalent to that in the isolated system, multiplied with a certain pre-factor, which accounts for the interaction with the heavy-tailed class. Specifically, the pre-factor represents the probability that the heavy-tailed class is backlogged long enough for the light-tailed class to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario

    Traffic measurement and analysis

    Get PDF
    Measurement and analysis of real traffic is important to gain knowledge about the characteristics of the traffic. Without measurement, it is impossible to build realistic traffic models. It is recent that data traffic was found to have self-similar properties. In this thesis work traffic captured on the network at SICS and on the Supernet, is shown to have this fractal-like behaviour. The traffic is also examined with respect to which protocols and packet sizes are present and in what proportions. In the SICS trace most packets are small, TCP is shown to be the predominant transport protocol and NNTP the most common application. In contrast to this, large UDP packets sent between not well-known ports dominates the Supernet traffic. Finally, characteristics of the client side of the WWW traffic are examined more closely. In order to extract useful information from the packet trace, web browsers use of TCP and HTTP is investigated including new features in HTTP/1.1 such as persistent connections and pipelining. Empirical probability distributions are derived describing session lengths, time between user clicks and the amount of data transferred due to a single user click. These probability distributions make up a simple model of WWW-sessions

    Improving adaptation and interpretability of a short-term traffic forecasting system

    Get PDF
    Traffic management is being more important than ever, especially in overcrowded big cities with over-pollution problems and with new unprecedented mobility changes. In this scenario, road-traffic prediction plays a key role within Intelligent Transportation Systems, allowing traffic managers to be able to anticipate and take the proper decisions. This paper aims to analyse the situation in a commercial real-time prediction system with its current problems and limitations. The analysis unveils the trade-off between simple parsimonious models and more complex models. Finally, we propose an enriched machine learning framework, Adarules, for the traffic prediction in real-time facing the problem as continuously incoming data streams with all the commonly occurring problems in such volatile scenario, namely changes in the network infrastructure and demand, new detection stations or failure ones, among others. The framework is also able to infer automatically the most relevant features to our end-task, including the relationships within the road network. Although the intention with the proposed framework is to evolve and grow with new incoming big data, however there is no limitation in starting to use it without any prior knowledge as it can starts learning the structure and parameters automatically from data. We test this predictive system in different real-work scenarios, and evaluate its performance integrating a multi-task learning paradigm for the sake of the traffic prediction task.Peer ReviewedPostprint (published version

    Simple models of network access, with applications to the design of joint rate and admission control

    Get PDF
    At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small, which has network engineering implications that are investigated in this paper. We consider a single point in the access network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access multiplexer. Important parameters are the user's peak transmission rate p, which is the access line speed, the user's guaranteed minimum rate r, and the bound ε on the fraction of lost data. Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under the assumption that the users' job sizes and think times have exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection of the number of admissible users, to maximize throughput for given p, r, and ε. Next we consider the case in which the number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We discuss the extension to general distributions of user data and think times
    corecore