2,764 research outputs found

    Transforming N-ary relationships to database schemas: an old and forgotten problem

    Get PDF
    The N-ary relationships, have been traditionally a source of confusion and still are. One important source of confusion is that the term cardinality in a relationship has several interpretations, two of them being very popular. But none of the two approaches, nor the two together, allow us to express all the possible cardinality patterns. The transformations from all the possible relationships to database schemas have never been described by the existing literature. Using the 14 ternary patterns as example, we discuss these transformations particularly the transformations from the patterns ignored in the literature.Postprint (published version

    Justification for inclusion dependency normal form

    Get PDF
    Functional dependencies (FDs) and inclusion dependencies (INDs) are the most fundamental integrity constraints that arise in practice in relational databases. In this paper, we address the issue of normalization in the presence of FDs and INDs and, in particular, the semantic justification for Inclusion Dependency Normal Form (IDNF), a normal form which combines Boyce-Codd normal form with the restriction on the INDs that they be noncircular and key-based. We motivate and formalize three goals of database design in the presence of FDs and INDs: noninteraction between FDs and INDs, elimination of redundancy and update anomalies, and preservation of entity integrity. We show that, as for FDs, in the presence of INDs being free of redundancy is equivalent to being free of update anomalies. Then, for each of these properties, we derive equivalent syntactic conditions on the database design. Individually, each of these syntactic conditions is weaker than IDNF and the restriction that an FD not be embedded in the righthand side of an IND is common to three of the conditions. However, we also show that, for these three goals of database design to be satisfied simultaneously, IDNF is both a necessary and sufficient condition

    A Rule-Based Approach to Analyzing Database Schema Objects with Datalog

    Full text link
    Database schema elements such as tables, views, triggers and functions are typically defined with many interrelationships. In order to support database users in understanding a given schema, a rule-based approach for analyzing the respective dependencies is proposed using Datalog expressions. We show that many interesting properties of schema elements can be systematically determined this way. The expressiveness of the proposed analysis is exemplarily shown with the problem of computing induced functional dependencies for derived relations. The propagation of functional dependencies plays an important role in data integration and query optimization but represents an undecidable problem in general. And yet, our rule-based analysis covers all relational operators as well as linear recursive expressions in a systematic way showing the depth of analysis possible by our proposal. The analysis of functional dependencies is well-integrated in a uniform approach to analyzing dependencies between schema elements in general.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Guaranteeing no interaction between functional dependencies and tree-like inclusion dependencies

    Get PDF
    Functional dependencies (FDs) and inclusion dependencies (INDs) are the most fundamental integrity constraints that arise in practice in relational databases. A given set of FDs does not interact with a given set of INDs if logical implication of any FD can be determined solely by the given set of FDs, and logical implication of any IND can be determined solely by the given set of INDs. The set of tree-like INDs constitutes a useful subclass of INDs whose implication problem is polynomial time decidable. We exhibit a necessary and sufficient condition for a set of FDs and tree-like INDs not to interact; this condition can be tested in polynomial time

    Path constraints in semistructured databases

    Get PDF
    AbstractWe investigate a class of path constraints that is of interest in connection with both semistructured and structured data. In standard database systems, constraints are typically expressed as part of the schema, but in semistructured data there is no explicit schema and path constraints provide a natural alternative. As with structured data, path constraints on semistructured data express integrity constraints associated with the semantics of data and are important in query optimization. We show that in semistructured databases, despite the simple syntax of the constraints, their associated implication problem is r.e. complete and finite implication problem is co-r.e. complete. However, we establish the decidability of the implication and finite implication problems for several fragments of the path constraint language and demonstrate that these fragments suffice to express important semantic information such as extent constraints, inverse relationships, and local database constraints commonly found in object-oriented databases
    corecore