546 research outputs found

    Mayall:a framework for desktop JavaScript auditing and post-exploitation analysis

    Get PDF
    Writing desktop applications in JavaScript offers developers the opportunity to write cross-platform applications with cutting edge capabilities. However in doing so, they are potentially submitting their code to a number of unsanctioned modifications from malicious actors. Electron is one such JavaScript application framework which facilitates this multi-platform out-the-box paradigm and is based upon the Node.js JavaScript runtime --- an increasingly popular server-side technology. In bringing this technology to the client-side environment, previously unrealized risks are exposed to users due to the powerful system programming interface that Node.js exposes. In a concerted effort to highlight previously unexposed risks in these rapidly expanding frameworks, this paper presents the Mayall Framework, an extensible toolkit aimed at JavaScript security auditing and post-exploitation analysis. The paper also exposes fifteen highly popular Electron applications and demonstrates that two thirds of applications were found to be using known vulnerable elements with high CVSS scores. Moreover, this paper discloses a wide-reaching and overlooked vulnerability within the Electron Framework which is a direct byproduct of shipping the runtime unaltered with each application, allowing malicious actors to modify source code and inject covert malware inside verified and signed applications without restriction. Finally, a number of injection vectors are explored and appropriate remediations are proposed

    An Empirical Analysis of Vulnerabilities in Python Packages for Web Applications

    Full text link
    This paper examines software vulnerabilities in common Python packages used particularly for web development. The empirical dataset is based on the PyPI package repository and the so-called Safety DB used to track vulnerabilities in selected packages within the repository. The methodological approach builds on a release-based time series analysis of the conditional probabilities for the releases of the packages to be vulnerable. According to the results, many of the Python vulnerabilities observed seem to be only modestly severe; input validation and cross-site scripting have been the most typical vulnerabilities. In terms of the time series analysis based on the release histories, only the recent past is observed to be relevant for statistical predictions; the classical Markov property holds.Comment: Forthcoming in: Proceedings of the 9th International Workshop on Empirical Software Engineering in Practice (IWESEP 2018), Nara, IEE

    SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties

    Get PDF
    This paper systematizes knowledge about secure software supply chain patterns. It identifies four stages of a software supply chain attack and proposes three security properties crucial for a secured supply chain: transparency, validity, and separation. The paper describes current security approaches and maps them to the proposed security properties, including research ideas and case studies of supply chains in practice. It discusses the strengths and weaknesses of current approaches relative to known attacks and details the various security frameworks put out to ensure the security of the software supply chain. Finally, the paper highlights potential gaps in actor and operation-centered supply chain security techniques
    • …
    corecore