10 research outputs found

    Hearing Restoration through Optical Wireless Cochlear Implants

    Get PDF
    In this chapter, we present two novel optical wireless-based cochlear implant architectures: (i) optical wireless cochlear implant (OWCI) and (ii) all-optical cochlear implant (AOCI). Both the architectures aim to decisively improve the reliability and energy efficiency of hearing restoration devices. To provide design and development guidelines, we document their main components, discuss the particularities of the transdermal optical channel, and provide the analytical framework for their accurate modeling. Building upon this framework, we extract closed-form formulas that quantify the communication, the stimulation, and the overall performance. An overall comparison of OWCI and AOCI, as well as conventional cochlear implants, accompanied by future research directions summarizes this chapter. Our findings reveal that both the OWCI and the AOCI outperform conventional cochlear implant approaches; thus, they are identified as promising architectures for the next generation of cochlear implants

    Channel modeling and characterization for VLC-based medical body sensor networks: trends and challenges

    Get PDF
    Optical Wireless Communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, Infrared (IR), and Ultraviolet (UV) bands. In this paper, we focus on indoor Visible Light Communication (VLC)-based Medical Body Sensor Networks (MBSNs) which allow the Light Emitting Diodes (LEDs) to communicate between on-body sensors/subdermal implants and on-body central hubs/monitoring devices while also serving as a luminaire. Since the Quality-of-Service (QoS) of the communication systems depends heavily on realistic channel modeling and characterization, this paper aims at presenting an up-to-date survey of works on channel modeling activities for MBSNs. The first part reviews existing IR-based MBSNs channel models based on which VLC channel models are derived. The second part of this review provides details on existing VLC-based MBSNs channel models according to the mobility of the MBSNs on the patient’s body. We also present a realistic channel modeling approach called site-specific ray tracing that considers the skin tissue for the MBSNs channel modeling for realistic hospital scenarios.Scientific Research Projects (BAP) (Grant Number: 20A204)Publisher's Versio

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    6G wireless communications networks: a comprehensive survey

    Get PDF
    The commercial fifth-generation (5G) wireless communications networks have already been deployed with the aim of providing high data rates. However, the rapid growth in the number of smart devices and the emergence of the Internet of Everything (IoE) applications, which require an ultra-reliable and low-latency communication, will result in a substantial burden on the 5G wireless networks. As such, the data rate that could be supplied by 5G networks will unlikely sustain the enormous ongoing data traffic explosion. This has motivated research into continuing to advance the existing wireless networks toward the future generation of cellular systems, known as sixth generation (6G). Therefore, it is essential to provide a prospective vision of the 6G and the key enabling technologies for realizing future networks. To this end, this paper presents a comprehensive review/survey of the future evolution of 6G networks. Specifically, the objective of the paper is to provide a comprehensive review/survey about the key enabling technologies for 6G networks, which include a discussion about the main operation principles of each technology, envisioned potential applications, current state-of-the-art research, and the related technical challenges. Overall, this paper provides useful information for industries and academic researchers and discusses the potentials for opening up new research directions

    THE USE OF TUNED FRONT END OPTICAL RECEIVER AND PULSE POSITION MODULATION

    Get PDF
    The aim of this work is to investigate the use of tuned front-ends with OOK and PPM schemes, in addition to establish a theory for baseband tuned front end receivers. In this thesis, a background of baseband receivers, tuned receivers, and modulation schemes used in baseband optical communication is presented. Also, the noise theory of baseband receivers is reviewed which establishes a grounding for developing the theory relating to optical baseband tuned receivers. This work presents novel analytical expressions for tuned transimpedance, tuned components, noise integrals and equivalent input and output noise densities of two tuned front-end receivers employing bi-polar junction transistors and field effect transistors as the input. It also presents novel expressions for optimising the collector current for tuned receivers. The noise modelling developed in this work overcomes some limitations of the conventional noise modelling and allows tuned receivers to be optimised and analysed. This work also provides an in-depth investigation of optical baseband tuned receivers for on-off keying (OOK), Pulse position modulation (PPM), and Di-code pulse position modulation (Di-code PPM). This investigation aims to give quantitative predictions of the receiver performance for various types of receivers with different photodetectors (PIN photodetector and avalanche photodetector), different input transistors (bi-polar junction transistor BJT and field effect transistor FET), different pre-detection filters (1st order low pass filter and 3rd order Butterworth filter), different detection methods, and different tuned configurations (inductive shunt feedback front end tuned A and serial tuned front end tuned B). This investigation considers various optical links such as line of sight (LOS) optical link, non-line of sight (NLOS) link and optical fibre link. All simulations, modelling, and calculations (including: channel modelling, receiver modelling, noise modelling, pulse shape and inter-symbol interference simulations, and error probability and receiver calculations) are performed by using a computer program (PTC Mathcad prime 4, version: M010/2017) which is used to evaluate and analyse the performance of these optical links. As an outcome of this investigation, noise power in tuned receivers is significantly reduced for all examined configurations and under different conditions compared to non-tuned receivers. The overall receiver performance is improved by over 3dB in some cases. This investigation provides an overview and demonstration of cases where tuned receiver can be optimised for baseband transmission, offering a much better performance compared to non-tuned receivers. The performance improvement that tuned receivers offers can benefit a wide range of optical applications. This investigation also addresses some recommendations and suggestions for further work in some emerging applications such as underwater optical wireless communication (UOWC), visible light communication (VLC), and implantable medical devices (IMD). Keyword: Optical communications, Baseband receivers, Noise modelling, tuned front end, pulse position modulation (PPM)
    corecore