10,911 research outputs found

    On the Impact of Geometry on Ad Hoc Communication in Wireless Networks

    Full text link
    In this work we address the question how important is the knowledge of geometric location and network density to the efficiency of (distributed) wireless communication in ad hoc networks. We study fundamental communication task of broadcast and develop well-scalable, randomized algorithms that do not rely on GPS information, and which efficiency formulas do not depend on how dense the geometric network is. We consider two settings: with and without spontaneous wake-up of nodes. In the former setting, in which all nodes start the protocol at the same time, our algorithm accomplishes broadcast in O(Dlogn+log2n)O(D\log n + \log^2 n) rounds under the SINR model, with high probability (whp), where DD is the diameter of the communication graph and nn is the number of stations. In the latter setting, in which only the source node containing the original message is active in the beginning, we develop a slightly slower algorithm working in O(Dlog2n)O(D\log^2 n) rounds whp. Both algorithms are based on a novel distributed coloring method, which is of independent interest and potential applicability to other communication tasks under the SINR wireless model

    Power Beacon-Assisted Millimeter Wave Ad Hoc Networks

    Get PDF
    Deployment of low cost power beacons (PBs) is a promising solution for dedicated wireless power transfer (WPT) in future wireless networks. In this paper, we present a tractable model for PB-assisted millimeter wave (mmWave) wireless ad hoc networks, where each transmitter (TX) harvests energy from all PBs and then uses the harvested energy to transmit information to its desired receiver. Our model accounts for realistic aspects of WPT and mmWave transmissions, such as power circuit activation threshold, allowed maximum harvested power, maximum transmit power, beamforming and blockage. Using stochastic geometry, we obtain the Laplace transform of the aggregate received power at the TX to calculate the power coverage probability. We approximate and discretize the transmit power of each TX into a finite number of discrete power levels in log scale to compute the channel and total coverage probability. We compare our analytical predictions to simulations and observe good accuracy. The proposed model allows insights into effect of system parameters, such as transmit power of PBs, PB density, main lobe beam-width and power circuit activation threshold on the overall coverage probability. The results confirm that it is feasible and safe to power TXs in a mmWave ad hoc network using PBs.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Secure Communications in Millimeter Wave Ad Hoc Networks

    Get PDF
    Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.Comment: Accepted by IEEE Transactions on Wireless Communication

    Impact of network structure on the capacity of wireless multihop ad hoc communication

    Full text link
    As a representative of a complex technological system, so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.Comment: 30 pages, to be published in Physica

    Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network

    Full text link
    In wireless mesh networks such as WLAN (IEEE 802.11s) or WMAN (IEEE 802.11), each node should help to relay packets of neighboring nodes toward gateway using multi-hop routing mechanisms. Wireless mesh networks usually intensively deploy mesh nodes to deal with the problem of dead spot communication. However, the higher density of nodes deployed, the higher radio interference occurred. This causes significant degradation of system performance. In this paper, we first convert network problems into geometry problems in graph theory, and then solve the interference problem by geometric algorithms. We first define line intersection in a graph to reflect radio interference problem in a wireless mesh network. We then use plan sweep algorithm to find intersection lines, if any; employ Voronoi diagram algorithm to delimit the regions among nodes; use Delaunay Triangulation algorithm to reconstruct the graph in order to minimize the interference among nodes. Finally, we use standard deviation to prune off those longer links (higher interference links) to have a further enhancement. The proposed hybrid solution is proved to be able to significantly reduce interference in a wireless mesh network in O(n log n) time complexity.Comment: 24 Pages, JGraph-Hoc Journal 201
    corecore