337 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Analysis and optimization of highly reliable systems

    Get PDF
    In the field of network design, the survivability property enables the network to maintain a certain level of network connectivity and quality of service under failure conditions. In this thesis, survivability aspects of communication systems are studied. Aspects of reliability and vulnerability of network design are also addressed. The contributions are three-fold. First, a Hop Constrained node Survivable Network Design Problem (HCSNDP) with optional (Steiner) nodes is modelled. This kind of problems are N P-Hard. An exact integer linear model is built, focused on networks represented by graphs without rooted demands, considering costs in arcs and in Steiner nodes. In addition to the exact model, the calculation of lower and upper bounds to the optimal solution is included. Models were tested over several graphs and instances, in order to validate it in cases with known solution. An Approximation Algorithm is also developed in order to address a particular case of SNDP: the Two Node Survivable Star Problem (2NCSP) with optional nodes. This problem belongs to the class of N P-Hard computational problems too. Second, the research is focused on cascading failures and target/random attacks. The Graph Fragmentation Problem (GFP) is the result of a worst case analysis of a random attack. A fixed number of individuals for protection can be chosen, and a non-protected target node immediately destroys all reachable nodes. The goal is to minimize the expected number of destroyed nodes in the network. This problem belongs to the N P-Hard class. A mathematical programming formulation is introduced and exact resolution for small instances as well as lower and upper bounds to the optimal solution. In addition to exact methods, we address the GFP by several approaches: metaheuristics, approximation algorithms, polytime methods for specific instances and exact methods in exponential time. Finally, the concept of separability in stochastic binary systems is here introduced. Stochastic Binary Systems (SBS) represent a mathematical model of a multi-component on-off system subject to independent failures. The reliability evaluation of an SBS belongs to the N P-Hard class. Therefore, we fully characterize separable systems using Han-Banach separation theorem for convex sets. Using this new concept of separable systems and Markov inequality, reliability bounds are provided for arbitrary SBS

    Topology-Constrained Network Design

    Get PDF
    International audienc

    A fault-tolerant relay placement algorithm for ensuring k vertex-disjoint shortest paths in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are prone to failures. To be robust to failures, the network topology should provide alternative routes to the sinks so when failures occur the routing protocol can still offer reliable delivery. Our contribution is a solution that enables fault-tolerant WSN deployment planning by judicious use of a minimum number of additional relays. A WSN is robust if at least one route with an acceptable length to a sink is available for each sensor node after the failure of any nodes. In this paper, we define the problem for increasing WSN reliability by deploying a number of additional relays to ensure that each sensor node in the initial design has k length-bounded vertex-disjoint shortest paths to the sinks. To identify the maximum k such that each node has k vertex-disjoint shortest paths, we propose Counting-Paths and its dynamic programming variant. Then, we introduce GRASP-ARP, a centralised offline algorithm that uses Counting-Paths to minimise the number of deployed relays. Empirically, it deploys 35% fewer relays with reasonable runtime compared to the closest approach. Using network simulation, we show that GRASP-ARP’s designs offer a substantial improvement over the original topologies, maintaining connectivity for twice as many surviving nodes after 10% of the original nodes have failed

    The Multilayer Capacitated Survivable IP Network Design Problem : valid inequalities and Branch-and-Cut

    No full text
    Telecommunication networks can be seen as the stacking of several layers like, for instance, IP-over-Optical networks. This infrastructure has to be sufficiently survivable to restore the traffic in the event of a failure. Moreover, it should have adequate capacities so that the demands can be routed between the origin-destinations. In this paper we consider the Multilayer Capacitated Survivable IP Network Design problem. We study two variants of this problem with simple and multiple capacities. We give two multicommodity flow formulations for each variant of this problem and describe some valid inequalities. In particular, we characterize valid inequalities obtained using Chvatal-Gomory procedure from the well known Cutset inequalities. We show that some of these inequalities are facet defining. We discuss separation routines for all the valid inequalities. Using these results, we develop a Branch-and-Cut algorithm and a Branch-and-Cut-and-Price algorithm for each variant and present extensive computational results
    • …
    corecore