11,238 research outputs found

    Hardness and inapproximability results for minimum verification set and minimum path decision tree problems

    Get PDF
    Minimization of decision trees is a well studied problem. In this work, we introduce two new problems related to minimization of decision trees. The problems are called minimum verification set (MinVS) and minimum path decision tree (MinPathDT) problems. Decision tree problems ask the question "What is the unknown given object?". MinVS problem on the other hand asks the question "Is the unknown object z?", for a given object z. Hence it is not an identification, but rather a verification problem. MinPathDT problem aims to construct a decision tree where only the cost of the root-to-leaf path corresponding to a given object is minimized, whereas decision tree problems in general try to minimize the overall cost of decision trees considering all the objects. Therefore, MinVS and MinPathDT are seemingly easier problems. However, in this work we prove that MinVS and MinPathDT problems are both NP-complete and cannot be approximated within a factor in o(lg n) unless P = NP

    O(log2k/loglogk)O(\log^2k/\log\log{k})-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm

    Get PDF
    In the Directed Steiner Tree (DST) problem we are given an nn-vertex directed edge-weighted graph, a root rr, and a collection of kk terminal nodes. Our goal is to find a minimum-cost arborescence that contains a directed path from rr to every terminal. We present an O(log2k/loglogk)O(\log^2 k/\log\log{k})-approximation algorithm for DST that runs in quasi-polynomial-time. By adjusting the parameters in the hardness result of Halperin and Krauthgamer, we show the matching lower bound of Ω(log2k/loglogk)\Omega(\log^2{k}/\log\log{k}) for the class of quasi-polynomial-time algorithms. This is the first improvement on the DST problem since the classical quasi-polynomial-time O(log3k)O(\log^3 k) approximation algorithm by Charikar et al. (The paper erroneously claims an O(log2k)O(\log^2k) approximation due to a mistake in prior work.) Our approach is based on two main ingredients. First, we derive an approximation preserving reduction to the Label-Consistent Subtree (LCST) problem. The LCST instance has quasi-polynomial size and logarithmic height. We remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all prior work on DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of similar height, however losing a logarithmic factor in the approximation ratio. Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances, which is inspired by the framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our rounding algorithm proceeds level by level from the root to the leaves, rounding and conditioning each time on a proper subset of label variables. A small enough (namely, polylogarithmic) number of Sherali-Adams lifting levels is sufficient to condition up to the leaves

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    Combinatorial optimization problems in self-assembly

    Get PDF
    Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to efficient self-assembly of shapes in the Tile Assembly Model of self-assembly proposed by Rothemund and Winfree [18]. The first is the Minimum Tile Set Problem, where the goal is to find the smallest tile system that uniquely produces a given shape. The second is the Tile Concentrations Problem, where the goal is to decide on the relative concentrations of different types of tiles so that a tile system assembles as quickly as possible. The first problem is akin to finding optimum program size, and the second to finding optimum running time for a "program" to assemble the shape.Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to efficient self-assembly of shapes in the Tile Assembly Model of self-assembly proposed by Rothemund and Winfree [18]. The first is the Minimum Tile Set Problem, where the goal is to find the smallest tile system that uniquely produces a given shape. The second is the Tile Concentrations Problem, where the goal is to decide on the relative concentrations of different types of tiles so that a tile system assembles as quickly as possible. The first problem is akin to finding optimum program size, and the second to finding optimum running time for a "program" to assemble the shape. We prove that the first problem is NP-complete in general, and polynomial time solvable on trees and squares. In order to prove that the problem is in NP, we present a polynomial time algorithm to verify whether a given tile system uniquely produces a given shape. This algorithm is analogous to a program verifier for traditional computational systems, and may well be of independent interest. For the second problem, we present a polynomial time O(logn)O(\log n)-approximation algorithm that works for a large class of tile systems that we call partial order systems

    On the Complexity of Searching in Trees: Average-case Minimization

    Full text link
    We focus on the average-case analysis: A function w : V -> Z+ is given which defines the likelihood for a node to be the one marked, and we want the strategy that minimizes the expected number of queries. Prior to this paper, very little was known about this natural question and the complexity of the problem had remained so far an open question. We close this question and prove that the above tree search problem is NP-complete even for the class of trees with diameter at most 4. This results in a complete characterization of the complexity of the problem with respect to the diameter size. In fact, for diameter not larger than 3 the problem can be shown to be polynomially solvable using a dynamic programming approach. In addition we prove that the problem is NP-complete even for the class of trees of maximum degree at most 16. To the best of our knowledge, the only known result in this direction is that the tree search problem is solvable in O(|V| log|V|) time for trees with degree at most 2 (paths). We match the above complexity results with a tight algorithmic analysis. We first show that a natural greedy algorithm attains a 2-approximation. Furthermore, for the bounded degree instances, we show that any optimal strategy (i.e., one that minimizes the expected number of queries) performs at most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum degree of T. We combine this result with a non-trivial exponential time algorithm to provide an FPTAS for trees with bounded degree

    Ising formulations of many NP problems

    Get PDF
    We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering and satisfiability. In each case, the required number of spins is at most cubic in the size of the problem. This work may be useful in designing adiabatic quantum optimization algorithms.Comment: 27 pages; v2: substantial revision to intro/conclusion, many more references; v3: substantial revision and extension, to-be-published versio

    Hardness measures and resolution lower bounds

    Full text link
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this report we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. We also extend these measures to all clause-sets (possibly satisfiable).Comment: 43 pages, preliminary version (yet the application part is only sketched, with proofs missing
    corecore