72 research outputs found

    The complexity of the L(p,q)-labeling problem for bipartite planar graphs of small degree

    Get PDF
    AbstractGiven a simple graph G, by an L(p,q)-labeling of G we mean a function c that assigns nonnegative integers to its vertices in such a way that if two vertices u, v are adjacent then |c(u)−c(v)|≥p, and if they are at distance 2 then |c(u)−c(v)|≥q. The L(p,q)-labeling problem can be defined as follows: given a graph G and integer t, determine whether there exists an L(p,q)-labeling c of G such that c(V)⊆{0,1,…,t}. In the paper we show that the problem is NP-complete even when restricted to bipartite planar graphs of small maximum degree and for relatively small values of t. More precisely, we prove that: (1)if p<3q then the problem is NP-complete for bipartite planar graphs of maximum degree Δ≤3 and t=p+max{2q,p};(2)if p=3q then the problem is NP-complete for bipartite planar graphs of maximum degree Δ≤4 and t=6q;(3)if p>3q then the problem is NP-complete for bipartite planar graphs of maximum degree Δ≤4 and t=p+5q.In particular, these results imply that the L(2,1)-labeling problem in planar graphs is NP-complete for t=4, and that the L(p,q)-labeling problem in graphs of maximum degree Δ≤4 is NP-complete for all values of p and q, thus answering two well-known open questions

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    The traveling salesman problem on cubic and subcubic graphs

    Get PDF
    We study the traveling salesman problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3-conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal value of a TSP instance and that of its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on TeX vertices a tour of length TeX exists, which also implies the 4/3-conjecture, as an upper bound, for this class of graph-TSP. Recently, Mömke and Svensson presented an algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3-conjecture for this class of graph-TSP. The algorithm by Mömke and Svensson is initially randomized but the authors remark that derandomization is trivial. We will present a different way to derandomize their algorithm which leads to a faster running time. All of the latter also works for multigraphs

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization

    Full text link
    We study dynamic (1+ϵ)(1+\epsilon)-approximation algorithms for the all-pairs shortest paths problem in unweighted undirected nn-node mm-edge graphs under edge deletions. The fastest algorithm for this problem is a randomized algorithm with a total update time of O~(mn/ϵ)\tilde O(mn/\epsilon) and constant query time by Roditty and Zwick [FOCS 2004]. The fastest deterministic algorithm is from a 1981 paper by Even and Shiloach [JACM 1981]; it has a total update time of O(mn2)O(mn^2) and constant query time. We improve these results as follows: (1) We present an algorithm with a total update time of O~(n5/2/ϵ)\tilde O(n^{5/2}/\epsilon) and constant query time that has an additive error of 22 in addition to the 1+ϵ1+\epsilon multiplicative error. This beats the previous O~(mn/ϵ)\tilde O(mn/\epsilon) time when m=Ω(n3/2)m=\Omega(n^{3/2}). Note that the additive error is unavoidable since, even in the static case, an O(n3δ)O(n^{3-\delta})-time (a so-called truly subcubic) combinatorial algorithm with 1+ϵ1+\epsilon multiplicative error cannot have an additive error less than 2ϵ2-\epsilon, unless we make a major breakthrough for Boolean matrix multiplication [Dor et al. FOCS 1996] and many other long-standing problems [Vassilevska Williams and Williams FOCS 2010]. The algorithm can also be turned into a (2+ϵ)(2+\epsilon)-approximation algorithm (without an additive error) with the same time guarantees, improving the recent (3+ϵ)(3+\epsilon)-approximation algorithm with O~(n5/2+O(log(1/ϵ)/logn))\tilde O(n^{5/2+O(\sqrt{\log{(1/\epsilon)}/\log n})}) running time of Bernstein and Roditty [SODA 2011] in terms of both approximation and time guarantees. (2) We present a deterministic algorithm with a total update time of O~(mn/ϵ)\tilde O(mn/\epsilon) and a query time of O(loglogn)O(\log\log n). The algorithm has a multiplicative error of 1+ϵ1+\epsilon and gives the first improved deterministic algorithm since 1981. It also answers an open question raised by Bernstein [STOC 2013].Comment: A preliminary version was presented at the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS 2013

    Deterministic Fully Dynamic SSSP and More

    Full text link
    We present the first non-trivial fully dynamic algorithm maintaining exact single-source distances in unweighted graphs. This resolves an open problem stated by Sankowski [COCOON 2005] and van den Brand and Nanongkai [FOCS 2019]. Previous fully dynamic single-source distances data structures were all approximate, but so far, non-trivial dynamic algorithms for the exact setting could only be ruled out for polynomially weighted graphs (Abboud and Vassilevska Williams, [FOCS 2014]). The exact unweighted case remained the main case for which neither a subquadratic dynamic algorithm nor a quadratic lower bound was known. Our dynamic algorithm works on directed graphs, is deterministic, and can report a single-source shortest paths tree in subquadratic time as well. Thus we also obtain the first deterministic fully dynamic data structure for reachability (transitive closure) with subquadratic update and query time. This answers an open problem of van den Brand, Nanongkai, and Saranurak [FOCS 2019]. Finally, using the same framework we obtain the first fully dynamic data structure maintaining all-pairs (1+ϵ)(1+\epsilon)-approximate distances within non-trivial sub-nωn^\omega worst-case update time while supporting optimal-time approximate shortest path reporting at the same time. This data structure is also deterministic and therefore implies the first known non-trivial deterministic worst-case bound for recomputing the transitive closure of a digraph.Comment: Extended abstract to appear in FOCS 202
    corecore