9,878 research outputs found

    Distributed interaction between computer virus and patch: A modeling study

    Full text link
    The decentralized patch distribution mechanism holds significant promise as an alternative to its centralized counterpart. For the purpose of accurately evaluating the performance of the decentralized patch distribution mechanism and based on the exact SIPS model that accurately captures the average dynamics of the interaction between viruses and patches, a new virus-patch interacting model, which is known as the generic SIPS model, is proposed. This model subsumes the linear SIPS model. The dynamics of the generic SIPS model is studied comprehensively. In particular, a set of criteria for the final extinction or/and long-term survival of viruses or/and patches are presented. Some conditions for the linear SIPS model to accurately capture the average dynamics of the virus-patch interaction are empirically found. As a consequence, the linear SIPS model can be adopted as a standard model for assessing the performance of the distributed patch distribution mechanism, provided the proper conditions are satisfied

    Evolutionary Poisson Games for Controlling Large Population Behaviors

    Full text link
    Emerging applications in engineering such as crowd-sourcing and (mis)information propagation involve a large population of heterogeneous users or agents in a complex network who strategically make dynamic decisions. In this work, we establish an evolutionary Poisson game framework to capture the random, dynamic and heterogeneous interactions of agents in a holistic fashion, and design mechanisms to control their behaviors to achieve a system-wide objective. We use the antivirus protection challenge in cyber security to motivate the framework, where each user in the network can choose whether or not to adopt the software. We introduce the notion of evolutionary Poisson stable equilibrium for the game, and show its existence and uniqueness. Online algorithms are developed using the techniques of stochastic approximation coupled with the population dynamics, and they are shown to converge to the optimal solution of the controller problem. Numerical examples are used to illustrate and corroborate our results

    Selfish Response to Epidemic Propagation

    Get PDF
    An epidemic spreading in a network calls for a decision on the part of the network members: They should decide whether to protect themselves or not. Their decision depends on the trade-off between their perceived risk of being infected and the cost of being protected. The network members can make decisions repeatedly, based on information that they receive about the changing infection level in the network. We study the equilibrium states reached by a network whose members increase (resp. decrease) their security deployment when learning that the network infection is widespread (resp. limited). Our main finding is that the equilibrium level of infection increases as the learning rate of the members increases. We confirm this result in three scenarios for the behavior of the members: strictly rational cost minimizers, not strictly rational, and strictly rational but split into two response classes. In the first two cases, we completely characterize the stability and the domains of attraction of the equilibrium points, even though the first case leads to a differential inclusion. We validate our conclusions with simulations on human mobility traces.Comment: 19 pages, 5 figures, submitted to the IEEE Transactions on Automatic Contro
    • …
    corecore