192 research outputs found

    Split-step forward methods for stochastic differential equations

    Get PDF
    AbstractIn this paper we discuss split-step forward methods for solving Itô stochastic differential equations (SDEs). Eight fully explicit methods, the drifting split-step Euler (DRSSE) method, the diffused split-step Euler (DISSE) method and the three-stage Milstein (TSM 1a–TSM 1f) methods, are constructed based on Euler–Maruyama method and Milstein method, respectively, in this paper. Their order of strong convergence is proved. The analysis of stability shows that the mean-square stability properties of the methods derived in this paper are improved on the original methods. The numerical results show the effectiveness of these methods in the pathwise approximation of Itô SDEs

    Stochastic Parameterization: A Rigorous Approach to Stochastic Three-Dimensional Primitive Equations

    Get PDF
    The atmosphere is a strongly nonlinear and infinite-dimensional dynamical system acting on a multitude of different time and space scales. A possible problem of numerical weather prediction and climate modeling using deterministic parameterization of subscale and unresolved processes is the incomplete consideration of scale interactions. A stochastic treatment of these parameterizations bears the potential to improve the simulations and to provide a better understanding of the scale interactions of the simulated atmospheric variables. The scientific community that is dealing with stochastic meteorological models can be divided into two groups: the first one uses pragmatic approaches to improve existing complex models. The second group pursues a mathematical rigorous way to develop stochastic models, which is currently limited to conceptual models. The overall objective of this work is to narrow the gap between pragmatic approaches and the mathematical rigorous methods. Using conceptual climate models, we point out that a stochastic formulation must not be chosen arbitrarily but has to be derived based on the physics of the system at hand. Equally important is a rigorous numerical implementation of the resulting stochastic model. The dynamics of sub grid and unresolved processes are often described by time continuous stochastic processes, which cannot be treated with deterministic numerical schemes. We show that a stochastic formulation of the three-dimensional primitive equations fits in the mathematical framework of abstract stochastic fluid models. This allows us to utilize recent results regarding existence and uniqueness of solutions of such systems. Based on these theoretical results we propose a Galerkin scheme for the discretization of spatial and stochastic dimensions. Using the framework of mild solutions of stochastic partial differential equations we are able to prove quantitative error bounds and strong mean square convergence. Under additional assumptions we show the convergence of a numerical scheme which combines the Galerkin approximation with a temporal discretization.Stochastische Parametrisierung: Ein Rigoroser Ansatz für die Stochastischen Drei-Dimensionalen Primitiven Gleichungen Die Atmosphäre ist ein von starken Nichtlinearitäten geprägtes, unendlich-linebreak dimensionales dynamisches System, dessen Variablen auf einer Vielzahl verschiedener Raum- und Zeitskalen interagieren. Ein potentielles Problem von Modellen zur numerischen Wettervorhersage und Klimamodellierung, die auf deterministischen Parametrisierungen subskaliger Prozesse beruhen, ist die unzureichende Behandlung der Interaktion zwischen diesen Prozessen und den Modellvariablen. Eine stochastische Beschreibung dieser Parametrisierungen hat das Potential die Qualität der Simulationen zu verbessern und das Verständnis der Skalen-Interaktion atmosphärischer Variablen zu vertiefen. Die wissenschaftlich Gemeinschaft, die sich mit stochastischen meteorologischen Modellen beschäftigt, kann grob in zwei Gruppen unterteilt werden: die erste Gruppe ist bemüht durch pragmatische Ansätze bestehende, komplexe Modelle zu erweitern. Die zweite Gruppe verfolgt einen mathematisch rigorosen Weg, um stochastische Modelle zu entwickeln. Dies ist jedoch aufgrund der mathematischen Komplexität bisher auf konzeptionelle Modelle beschränkt. Das generelle Ziel der vorliegenden Arbeit ist es, die Kluft zwischen den pragmatischen und mathematisch rigorosen Ansätzen zu verringern. Die Diskussion zweier konzeptioneller Klimamodelle verdeutlicht, dass eine stochastische Formulierung nicht willkürlich gewählt werden darf, sondern aus der Physik des betrachteten Systems abgeleitet werden muss. Ebenso unabdingbar ist eine rigorose numerische Implementierung des resultierenden stochastischen Modells. Diesem Aspekt wird besondere Bedeutung zu Teil, da dynamische subskalige Prozesse oftmals durch zeitabhängige stochastische Prozesse beschrieben werden, die sich nicht mit deterministischen numerischen Methoden behandeln lassen. Wir zeigen auf, dass eine stochastische Formulierung der dreidimensionalen primitiven Gleichungen im mathematischen Rahmen abstrakter stochastischer Fluidmodelle behandelt werden kann. Dies ermöglicht die Anwendung kürzlich gewonnener Erkenntnisse bezüglich Existenz und Eindeutigkeit von Lösungen. Wir stellen einen auf dieser theoretischen Grundlage basierenden Galerkin Ansatz zur Diskretisierung der räumlichen und stochastischen Dimensionen vor. Mit Hilfe sogenannter milder Lösungen der stochastischen partiellen Differentialgleichungen leiten wir quantitative Schranken der Diskretisierungsfehler her und zeigen die starke Konvergenz des mittleren quadratischen Fehlers. Unter zusätzlichen Annahmen leiten wir die Konvergenz eines numerischen Verfahrens her, das den Galerkin Ansatz um eine zeitliche Diskretisierung erweitert

    A brief analysis of certain numerical methods used to solve stochastic differential equations

    Get PDF
    Stochastic differential equations (SDE’s) are used to describe systems which are influenced by randomness. Here, randomness is modelled as some external source interacting with the system, thus ensuring that the stochastic differential equation provides a more realistic mathematical model of the system under investigation than deterministic differential equations. The behaviour of the physical system can often be described by probability and thus understanding the theory of SDE’s requires the familiarity of advanced probability theory and stochastic processes. SDE’s have found applications in chemistry, physical and engineering sciences, microelectronics and economics. But recently, there has been an increase in the use of SDE’s in other areas like social sciences, computational biology and finance. In modern financial practice, asset prices are modelled by means of stochastic processes. Thus, continuous-time stochastic calculus plays a central role in financial modelling. The theory and application of interest rate modelling is one of the most important areas of modern finance. For example, SDE’s are used to price bonds and to explain the term structure of interest rates. Commonly used models include the Cox-Ingersoll-Ross model; the Hull-White model; and Heath-Jarrow-Morton model. Since there has been an expansion in the range and volume of interest rate related products being traded in the international financial markets in the past decade, it has become important for investment banks, other financial institutions, government and corporate treasury offices to require ever more accurate, objective and scientific forms for the pricing, hedging and general risk management of the resulting positions. Similar to ordinary differential equations, many SDE’s that appear in practical applications cannot be solved explicitly and therefore require the use of numerical methods. For example, to price an American put option, one requires the numerical solution of a free-boundary partial differential equation. There are various approaches to solving SDE’s numerically. Monte Carlo methods could be used whereby the physical system is simulated directly using a sequence of random numbers. Another method involves the discretisation of both the time and space variables. However, the most efficient and widely applicable approach to solving SDE’s involves the discretisation of the time variable only and thus generating approximate values of the sample paths at the discretisation times. This paper highlights some of the various numerical methods that can be used to solve stochastic differential equations. These numerical methods are based on the simulation of sample paths of time discrete approximations. It also highlights how these methods can be derived from the Taylor expansion of the SDE, thus providing opportunities to derive more advanced numerical schemes.Dissertation (MSc (Mathematics of Finance))--University of Pretoria, 2007.Mathematics and Applied MathematicsMScunrestricte

    Approximation of the invariant measure with an Euler scheme for Stochastic PDE's driven by Space-Time White Noise

    Full text link
    In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing - with exponential convergence to equilibrium. Considering test functions of class C2\mathcal{C}^2, bounded and with bounded derivatives, we prove that we can approximate this invariant measure using the numerical scheme, with order 1/2 with respect to the time step

    Strong Convergence of a GBM Based Tamed Integrator for SDEs and an Adaptive Implementation

    Full text link
    We introduce a tamed exponential time integrator which exploits linear terms in both the drift and diffusion for Stochastic Differential Equations (SDEs) with a one sided globally Lipschitz drift term. Strong convergence of the proposed scheme is proved, exploiting the boundedness of the geometric Brownian motion (GBM) and we establish order 1 convergence for linear diffusion terms. In our implementation we illustrate the efficiency of the proposed scheme compared to existing fixed step methods and utilize it in an adaptive time stepping scheme. Furthermore we extend the method to nonlinear diffusion terms and show it remains competitive. The efficiency of these GBM based approaches are illustrated by considering some well-known SDE models

    Stochastic viscosity approximations of Hamilton-Jacobi equations and variance reduction

    Full text link
    We consider the computation of free energy-like quantities for diffusions in high dimension, when resorting to Monte Carlo simulation is necessary. Such stochastic computations typically suffer from high variance, in particular in a low noise regime, because the expectation is dominated by rare trajectories for which the observable reaches large values. Although importance sampling, or tilting of trajectories, is now a standard technique for reducing the variance of such estimators, quantitative criteria for proving that a given control reduces variance are scarce, and often do not apply to practical situations. The goal of this work is to provide a quantitative criterion for assessing whether a given bias reduces variance, and at which order. We rely for this on a recently introduced notion of stochastic solution for Hamilton-Jacobi-Bellman (HJB) equations. Based on this tool, we introduce the notion of k-stochastic viscosity approximation (SVA) of a HJB equation. We next prove that such approximate solutions are associated with estimators having a relative variance of order k-1 at log-scale. In particular, a sampling scheme built from a 1-SVA has bounded variance as noise goes to zero. Finally, in order to show that our definition is relevant, we provide examples of stochastic viscosity approximations of order one and two, with a numerical illustration confirming our theoretical findings
    • …
    corecore