8 research outputs found

    On the Geometry of Balls in the Grassmannian and List Decoding of Lifted Gabidulin Codes

    Get PDF
    The finite Grassmannian Gq(k,n)\mathcal{G}_{q}(k,n) is defined as the set of all kk-dimensional subspaces of the ambient space Fqn\mathbb{F}_{q}^{n}. Subsets of the finite Grassmannian are called constant dimension codes and have recently found an application in random network coding. In this setting codewords from Gq(k,n)\mathcal{G}_{q}(k,n) are sent through a network channel and, since errors may occur during transmission, the received words can possible lie in Gq(k′,n)\mathcal{G}_{q}(k',n), where k′≠kk'\neq k. In this paper, we study the balls in Gq(k,n)\mathcal{G}_{q}(k,n) with center that is not necessarily in Gq(k,n)\mathcal{G}_{q}(k,n). We describe the balls with respect to two different metrics, namely the subspace and the injection metric. Moreover, we use two different techniques for describing these balls, one is the Pl\"ucker embedding of Gq(k,n)\mathcal{G}_{q}(k,n), and the second one is a rational parametrization of the matrix representation of the codewords. With these results, we consider the problem of list decoding a certain family of constant dimension codes, called lifted Gabidulin codes. We describe a way of representing these codes by linear equations in either the matrix representation or a subset of the Pl\"ucker coordinates. The union of these equations and the equations which arise from the description of the ball of a given radius in the Grassmannian describe the list of codewords with distance less than or equal to the given radius from the received word.Comment: To be published in Designs, Codes and Cryptography (Springer

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Equidistant Codes in the Grassmannian

    Full text link
    Equidistant codes over vector spaces are considered. For kk-dimensional subspaces over a large vector space the largest code is always a sunflower. We present several simple constructions for such codes which might produce the largest non-sunflower codes. A novel construction, based on the Pl\"{u}cker embedding, for 1-intersecting codes of kk-dimensional subspaces over \F_q^n, n≥(k+12)n \geq \binom{k+1}{2}, where the code size is qk+1−1q−1\frac{q^{k+1}-1}{q-1} is presented. Finally, we present a related construction which generates equidistant constant rank codes with matrices of size n×(n2)n \times \binom{n}{2} over \F_q, rank n−1n-1, and rank distance n−1n-1.Comment: 16 page
    corecore