2,650 research outputs found

    On the geodesic pre-hull number of a graph

    Get PDF
    AbstractGiven a convexity space X whose structure is induced by an interval operator I, we define a parameter, called the pre-hull number of X, which measures the intrinsic non-convexity of X in terms of the number of iterations of the pre-hull operator associated with I which are necessary in the worst case to reach the canonical extension of copoints of X when they are being extended by the adjunction of an attaching point. We consider primarily the geodesic convexity structure of connected graphs in the case where the pre-hull number is at most 1, with emphasis on bipartite graphs, in particular, partial cubes

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Multi Black Holes and Earthquakes on Riemann surfaces with boundaries

    Get PDF
    We prove an "Earthquake Theorem" for hyperbolic metrics with geodesic boundary on a compact surfaces SS with boundary: given two hyperbolic metrics with geodesic boundary on a surface with kk boundary components, there are 2k2^k right earthquakes transforming the first in the second. An alternative formulation arises by introducing the enhanced Teichmueller space of S: We prove that any two points of the latter are related by a unique right earthquake. The proof rests on the geometry of ``multi-black holes'', which are 3-dimensional anti-de Sitter manifolds, topologically the product of a surface with boundary by an interval.Comment: 29 pages, several figures. v2: corrections, more detailed arguments, etc. Update to v3 was an error while trying to update another preprint, v3 is not the right file. v4 reverts to v2. v5: streamlined introduction, various improvments in the expositio

    Algorithms for distance problems in planar complexes of global nonpositive curvature

    Full text link
    CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can construct in O(n^2 log n) time a data structure D of size O(n^2) so that, given a point x in K, the shortest path gamma(x,y) between x and the query point y can be computed in linear time. Our second algorithm computes the convex hull of a finite set of points in a CAT(0) planar complex. This algorithm is based on Toussaint's algorithm for computing the convex hull of a finite set of points in a simple polygon and it constructs the convex hull of a set of k points in O(n^2 log n + nk log k) time, using a data structure of size O(n^2 + k)
    • …
    corecore