5,167 research outputs found

    Automated unique input output sequence generation for conformance testing of FSMs

    Get PDF
    This paper describes a method for automatically generating unique input output (UIO) sequences for FSM conformance testing. UIOs are used in conformance testing to verify the end state of a transition sequence. UIO sequence generation is represented as a search problem and genetic algorithms are used to search this space. Empirical evidence indicates that the proposed method yields considerably better (up to 62% better) results compared with random UIO sequence generation

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    Chaining Test Cases for Reactive System Testing (extended version)

    Full text link
    Testing of synchronous reactive systems is challenging because long input sequences are often needed to drive them into a state at which a desired feature can be tested. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the time required for resetting is high. This paper presents an approach to discovering a test case chain---a single software execution that covers a group of test goals and minimises overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimise the number of test chains if a single test chain is infeasible. We report experimental results with a prototype tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators.Comment: extended version of paper published at ICTSS'1

    Improved test quality using robust unique input/output circuit sequences (UIOCs)

    Get PDF
    In finite state machine (FSM) based testing, the problem of fault masking in the unique input/ output (UIO) sequence may degrade the test performance of the UIO based methods. This paper investigates this problem and proposes the use of a new type of unique input/output circuit (UIOC) sequence for state verification, which may help to overcome the drawbacks that exist in the UIO based techniques. When constructing a UIOC, overlap and internal state observation schema are used to increase the robustness of a test sequence. Test quality is compared by using the forward UIO method (F-method), the backward UIO method (B-method) and the UIOC method (C-method) separately. Robustness of the UIOCs constructed by the algorithm given in this paper is also compared with those constructed by the algorithm given previously. Experimental results suggest that the C-method outperforms the F- and the B-methods and the UIOCs constructed by the Algorithm given in this paper, are more robust than those constructed by other proposed algorithms

    Testing a distributed system: Generating minimal synchronised test sequences that detect output-shifting faults

    Get PDF
    A distributed system may have a number of separate interfaces called ports and in testing it may be necessary to have a separate tester at each port. This introduces a number of issues, including the necessity to use synchronised test sequences and the possibility that output-shifting faults go undetected. This paper considers the problem of generating a minimal synchronised test sequence that detects output-shifting faults when the system is specified using a finite state machine with multiple ports. The set of synchronised test sequences that detect output-shifting faults is represented by a directed graph G and test generation involves finding appropriate tours of G. This approach is illustrated using the test criterion that the test sequence contains a test segment for each transition

    Constructing multiple unique input/output sequences using metaheuristic optimisation techniques

    Get PDF
    Multiple unique input/output sequences (UIOs) are often used to generate robust and compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and simulated annealing (SA) are effective in providing good solutions for some NP-hard problems. In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to locate UIOs that are calculated as local optima in a search domain. They also compare the performance of GA and SA for UIO construction. Experimental results suggest that, after using a sharing technique, both GA and SA can find a majority of UIOs from the models under test

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally
    • 

    corecore