36,790 research outputs found

    Applications of the contravariant form of the Navier-Stokes equations

    Get PDF
    The contravariant Navier-Stokes equations in weak conservation form are well suited to certain fluid flow analysis problems. Three dimensional contravariant momentum equations may be used to obtain Navier-Stokes equations in weak conservation form on a nonplanar two dimensional surface with varying streamsheet thickness. Thus a three dimensional flow can be simulated with two dimensional equations to obtain a quasi-three dimensional solution for viscous flow. When the Navier-Stokes equations on the two dimensional nonplanar surface are transformed to a generalized body fitted mesh coordinate system, the resulting equations are similar to the equations for a body fitted mesh coordinate system on the Euclidean plane. Contravariant momentum components are also useful for analyzing compressible, three dimensional viscous flow through an internal duct by parabolic marching. This type of flow is efficiently analyzed by parabolic marching methods, where the streamwise momentum equation is uncoupled from the two crossflow momentum equations. This can be done, even for ducts with a large amount of turning, if the Navier-Stokes equations are written with contravariant components

    On the Inviscid Limit of the 3D Navier-Stokes Equations with Generalized Navier-slip Boundary Conditions

    Full text link
    In this paper, we investigate the vanishing viscosity limit problem for the 3-dimensional (3D) incompressible Navier-Stokes equations in a general bounded smooth domain of R3R^3 with the generalized Navier-slip boundary conditions (\ref{VSg}). Some uniform estimates on rates of convergence in C([0,T],L2(Ω))C([0,T],L^2(\Omega)) and C([0,T],H1(Ω))C([0,T],H^1(\Omega)) of the solutions to the corresponding solutions of the idea Euler equations with the standard slip boundary condition are obtained

    A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    Get PDF
    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction

    On Meshfree GFDM Solvers for the Incompressible Navier-Stokes Equations

    Full text link
    Meshfree solution schemes for the incompressible Navier--Stokes equations are usually based on algorithms commonly used in finite volume methods, such as projection methods, SIMPLE and PISO algorithms. However, drawbacks of these algorithms that are specific to meshfree methods have often been overlooked. In this paper, we study the drawbacks of conventionally used meshfree Generalized Finite Difference Method~(GFDM) schemes for Lagrangian incompressible Navier-Stokes equations, both operator splitting schemes and monolithic schemes. The major drawback of most of these schemes is inaccurate local approximations to the mass conservation condition. Further, we propose a new modification of a commonly used monolithic scheme that overcomes these problems and shows a better approximation for the velocity divergence condition. We then perform a numerical comparison which shows the new monolithic scheme to be more accurate than existing schemes

    Convergence study and optimal weight functions of an explicit particle method for the incompressible Navier--Stokes equations

    Get PDF
    To increase the reliability of simulations by particle methods for incompressible viscous flow problems, convergence studies and improvements of accuracy are considered for a fully explicit particle method for incompressible Navier--Stokes equations. The explicit particle method is based on a penalty problem, which converges theoretically to the incompressible Navier--Stokes equations, and is discretized in space by generalized approximate operators defined as a wider class of approximate operators than those of the smoothed particle hydrodynamics (SPH) and moving particle semi-implicit (MPS) methods. By considering an analytical derivation of the explicit particle method and truncation error estimates of the generalized approximate operators, sufficient conditions of convergence are conjectured.Under these conditions, the convergence of the explicit particle method is confirmed by numerically comparing errors between exact and approximate solutions. Moreover, by focusing on the truncation errors of the generalized approximate operators, an optimal weight function is derived by reducing the truncation errors over general particle distributions. The effectiveness of the generalized approximate operators with the optimal weight functions is confirmed using numerical results of truncation errors and driven cavity flow. As an application for flow problems with free surface effects, the explicit particle method is applied to a dam break flow.Comment: 27 pages, 13 figure

    Viscous motion in an oceanic circulation model

    Get PDF
    The barotropic motion of a viscous fluid in a laboratory simulation of ocean circulation may be modelled by Beards ley's vorticity equations. It is established here that these equations have unique smooth solutions which depend continuously on initial conditions. To avoid a boundary condition which involves an integral operator, the vorticity equations are replaced by an equivalent system of momentum equations. The system resembles the two-dimensional incompressible Navier-Stokes equations in a rotating reference frame. The existence of unique generalized solutions of the system in a square domain is established by modifying arguments used by Ladyzhenskaya for the Navier-Stokes equations. Smoothness of the solutions is then established by modifying Golovkin's arguments, again originally for the Navier- Stokes equations. A numerical procedure for solving the vorticity equations is discussed, as are the effects of reentrant corners in the domain modelling islands and peninsulae
    corecore