52,806 research outputs found

    Massive Access for Future Wireless Communication Systems

    Full text link
    Multiple access technology played an important role in wireless communication in the last decades: it increases the capacity of the channel and allows different users to access the system simultaneously. However, the conventional multiple access technology, as originally designed for current human-centric wireless networks, is not scalable for future machine-centric wireless networks. Massive access (studied in the literature under such names as massive-device multiple access, unsourced massive random access, massive connectivity, massive machine-type communication, and many-access channels) exhibits a clean break with current networks by potentially supporting millions of devices in each cellular network. The tremendous growth in the number of connected devices requires a fundamental rethinking of the conventional multiple access technologies in favor of new schemes suited for massive random access. Among the many new challenges arising in this setting, the most relevant are: the fundamental limits of communication from a massive number of bursty devices transmitting simultaneously with short packets, the design of low complexity and energy-efficient massive access coding and communication schemes, efficient methods for the detection of a relatively small number of active users among a large number of potential user devices with sporadic transmission pattern, and the integration of massive access with massive MIMO and other important wireless communication technologies. This paper presents an overview of the concept of massive access wireless communication and of the contemporary research on this important topic.Comment: A short version has been accepted by IEEE Wireless Communication

    Ultra-Reliable Communication in 5G Wireless Systems

    Get PDF
    Wireless 5G systems will not only be "4G, but faster". One of the novel features discussed in relation to 5G is Ultra-Reliable Communication (URC), an operation mode not present in today's wireless systems. URC refers to provision of certain level of communication service almost 100 % of the time. Example URC applications include reliable cloud connectivity, critical connections for industrial automation and reliable wireless coordination among vehicles. This paper puts forward a systematic view on URC in 5G wireless systems. It starts by analyzing the fundamental mechanisms that constitute a wireless connection and concludes that one of the key steps towards enabling URC is revision of the methods for encoding control information (metadata) and data. It introduces the key concept of Reliable Service Composition, where a service is designed to adapt its requirements to the level of reliability that can be attained. The problem of URC is analyzed across two different dimensions. The first dimension is the type of URC problem that is defined based on the time frame used to measure the reliability of the packet transmission. Two types of URC problems are identified: long-term URC (URC-L) and short-term URC (URC-S). The second dimension is represented by the type of reliability impairment that can affect the communication reliability in a given scenario. The main objective of this paper is to create the context for defining and solving the new engineering problems posed by URC in 5G.Comment: To be presented at the 1st International Conference on 5G for Ubiquitous Connectivit
    • …
    corecore