36,447 research outputs found

    On the formal foundation of a verification approach for system-level concurrent programs

    Get PDF
    Though program verification is known and used since decades, the verification of a complete computer system still remains a grand challenge. In essence, this challenge stems from the interaction of various programs. Different techniques have been proposed for the verification of communicating programs. Common to all, however, is that they rely on several (usually implicit) assumptions about the underlying system. Typically, such assumptions include compiler correctness, scheduler fairness, and a certain noninterference between the local program behavior and its environment. This thesis aims at discharging these assumptions for the processes of the microkernel Vamos. More specifically, this work formally justifies the abstraction from a kernel model with explicit, deterministic scheduling to a concurrent process system with non-deterministic but temporally fair scheduling. Our formal results form the foundation of a verification approach for system-level concurrent programs. We outline this approach on example properties of a user-mode operating system.Obwohl es schon jahrzehntelang Programmverifikation gibt, wird die Verifikation eines kompletten Computersystems auch heute noch als eine große Herausforderung angesehen. Im Wesentlichen ergibt sich diese Herausforderung aus der vielfältigen Interaktion von Programmen. Verschiedene Techniken wurden für die Verifikation kommunizierender Programme vorgeschlagen. Alle haben jedoch gemein, dass sie sich auf mehrere (meist implizite) Annahmen über das zugrunde liegende System stützen. In der Regel sind solche Annahmen Compiler-Korrektheit, Scheduler-Fairness und eine gewisse Störfreiheit des lokalen Programmverhaltens vom Verhalten seiner Umgebung. Die vorliegende Dissertation beschäftigt sich mit der Entlastung dieser Annahmen für die Prozesse des Mikrokerns Vamos. Genauer gesagt, rechtfertigt diese Arbeit formal die Abstraktion von einem Kernmodell mit explizitem, deterministischem Scheduling zu einem nebenläufigen Prozesssystem mit nicht-deterministischem, aber temporal fairem Scheduling. Die formalen Ergebnisse bilden die Grundlage eines Verifikationsansatzes für nebenläufige, systemnahe Programme. Dieser Ansatz wird am Beispiel von Eigenschaften eines User-Mode-Betriebssystems erläutert

    On the formal foundation of a verification approach for system-level concurrent programs

    Get PDF
    Though program verification is known and used since decades, the verification of a complete computer system still remains a grand challenge. In essence, this challenge stems from the interaction of various programs. Different techniques have been proposed for the verification of communicating programs. Common to all, however, is that they rely on several (usually implicit) assumptions about the underlying system. Typically, such assumptions include compiler correctness, scheduler fairness, and a certain noninterference between the local program behavior and its environment. This thesis aims at discharging these assumptions for the processes of the microkernel Vamos. More specifically, this work formally justifies the abstraction from a kernel model with explicit, deterministic scheduling to a concurrent process system with non-deterministic but temporally fair scheduling. Our formal results form the foundation of a verification approach for system-level concurrent programs. We outline this approach on example properties of a user-mode operating system.Obwohl es schon jahrzehntelang Programmverifikation gibt, wird die Verifikation eines kompletten Computersystems auch heute noch als eine große Herausforderung angesehen. Im Wesentlichen ergibt sich diese Herausforderung aus der vielfältigen Interaktion von Programmen. Verschiedene Techniken wurden für die Verifikation kommunizierender Programme vorgeschlagen. Alle haben jedoch gemein, dass sie sich auf mehrere (meist implizite) Annahmen über das zugrunde liegende System stützen. In der Regel sind solche Annahmen Compiler-Korrektheit, Scheduler-Fairness und eine gewisse Störfreiheit des lokalen Programmverhaltens vom Verhalten seiner Umgebung. Die vorliegende Dissertation beschäftigt sich mit der Entlastung dieser Annahmen für die Prozesse des Mikrokerns Vamos. Genauer gesagt, rechtfertigt diese Arbeit formal die Abstraktion von einem Kernmodell mit explizitem, deterministischem Scheduling zu einem nebenläufigen Prozesssystem mit nicht-deterministischem, aber temporal fairem Scheduling. Die formalen Ergebnisse bilden die Grundlage eines Verifikationsansatzes für nebenläufige, systemnahe Programme. Dieser Ansatz wird am Beispiel von Eigenschaften eines User-Mode-Betriebssystems erläutert

    IST Austria Thesis

    Get PDF
    Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step

    Formal Modelling, Testing and Verification of HSA Memory Models using Event-B

    Full text link
    The HSA Foundation has produced the HSA Platform System Architecture Specification that goes a long way towards addressing the need for a clear and consistent method for specifying weakly consistent memory. HSA is specified in a natural language which makes it open to multiple ambiguous interpretations and could render bugs in implementations of it in hardware and software. In this paper we present a formal model of HSA which can be used in the development and verification of both concurrent software applications as well as in the development and verification of the HSA-compliant platform itself. We use the Event-B language to build a provably correct hierarchy of models from the most abstract to a detailed refinement of HSA close to implementation level. Our memory models are general in that they represent an arbitrary number of masters, programs and instruction interleavings. We reason about such general models using refinements. Using Rodin tool we are able to model and verify an entire hierarchy of models using proofs to establish that each refinement is correct. We define an automated validation method that allows us to test baseline compliance of the model against a suite of published HSA litmus tests. Once we complete model validation we develop a coverage driven method to extract a richer set of tests from the Event-B model and a user specified coverage model. These tests are used for extensive regression testing of hardware and software systems. Our method of refinement based formal modelling, baseline compliance testing of the model and coverage driven test extraction using the single language of Event-B is a new way to address a key challenge facing the design and verification of multi-core systems.Comment: 9 pages, 10 figure

    A Concurrent Perspective on Smart Contracts

    Get PDF
    In this paper, we explore remarkable similarities between multi-transactional behaviors of smart contracts in cryptocurrencies such as Ethereum and classical problems of shared-memory concurrency. We examine two real-world examples from the Ethereum blockchain and analyzing how they are vulnerable to bugs that are closely reminiscent to those that often occur in traditional concurrent programs. We then elaborate on the relation between observable contract behaviors and well-studied concurrency topics, such as atomicity, interference, synchronization, and resource ownership. The described contracts-as-concurrent-objects analogy provides deeper understanding of potential threats for smart contracts, indicate better engineering practices, and enable applications of existing state-of-the-art formal verification techniques.Comment: 15 page

    Formal Derivation of Concurrent Garbage Collectors

    Get PDF
    Concurrent garbage collectors are notoriously difficult to implement correctly. Previous approaches to the issue of producing correct collectors have mainly been based on posit-and-prove verification or on the application of domain-specific templates and transformations. We show how to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal specification, emphasizing the application of domain-independent design theories and transformations. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to account for the dynamics of concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the Proceedings of MPC 201

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    corecore