2,575 research outputs found

    SPECTRASAT: A concept for the collection of global directional wave spectra

    Get PDF
    The synthetic aperture radar (SAR) imagery from SEASAT revealed a rich tapestry of backscatter patterns from the surface of the ocean. Although still far from being fully understood, these patterns occurred on nearly all spatial scales accessible to the SAR, that is from its spatial resolution of 25 m to its full swath width of 100 km. Futhermore, the backscatter signature appear to reveal a large variety of atmospheric and oceanic processes that occur above, at, and below the ocean surface. Proper interpretation of these signatures of varying scales with respect to their underlying geophysical causes is a major objective of SAR ocean research. Even now, however, it is clear that SAR offers a unique means to monitor wind and waves over global scales. A properly designed, configured, and complimented orbiting SAR system should yield substantial improvements in operational forecasts vital to marine activities. Since wind and wave information is optimally extracted in the spectral domain, the name SPECTRASAT is proposed for this global collection scheme

    Investigation of Sea Ice Using Multiple Synthetic Aperture Radar Acquisitions

    Get PDF
    The papers of this thesis are not available in Munin. Paper I: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Tomographic imaging of fjord ice using a very high resolution ground-based SAR system. Available in IEEE Transactions on Geoscience and Remote Sensing, 55 (2):698-714. Paper II: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Lake and fjord ice imaging using a multifrequency ground-based tomographic SAR system. Available in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10):4457-4468. Paper III: Yitayew, T. G., Divine, D. V., Dierking, W., Eltoft, T., Ferro-Famil, L., Rosel, A. & Negrel, J. Validation of Sea ice Topographic Heights Derived from TanDEMX Interferometric SAR Data with Results from Laser Profiler and Photogrammetry. (Manuscript).The thesis investigates imaging in the vertical direction of different types of ice in the arctic using synthetic aperture radar (SAR) tomography and SAR interferometry. In the first part, the magnitude and the positions of the dominant scattering contributions within snow covered fjord and lake ice layers are effectively identified by using a very high resolution ground-based tomographic SAR system. Datasets collected at multiple frequencies and polarizations over two test sites in Tromsø area, northern Norway, are used for characterizing the three-dimensional response of snow and ice. The presented experimental results helped to improve our understanding of the interaction between radar waves and snow and ice layers. The reconstructed radar responses are also used for estimating the refractive indices and the vertical positions of the different sub-layers of snow and ice. The second part of the thesis deals with the retrieval of the surface topography of multi-year sea ice using SAR interferometry. Satellite acquisitions from TanDEM-X over the Svalbard area are used for analysis. The retrieved surface height is validated by using overlapping helicopter-based stereo camera and laser profiler measurements, and a very good agreement has been found. The work contributes to an improved understanding regarding the potential of SAR tomography for imaging the vertical scattering distribution of snow and ice layers, and for studying the influence of both sensor parameters such as its frequency and polarization and scene properties such as layer stratification, air bubbles and small-scale roughness of the interfaces on snow and ice backscattered signal. Moreover, the presented results reveal the potential of SAR interferometry for retrieving the surface topography of sea ice

    Quantifying and Modeling the Effects of Internal Waves on Synthetic Aperture Sonar

    Get PDF
    Synthetic aperture sonar (SAS) is based on synthetic aperture radar, with a number of key factors increasing the complexity of data collection. One of the assumptions made with respect to SAS image reconstruction is the presence of a constant sound speed. As a nearfield imaging system, SAS is sensitive to the breaking of this assumption. The sound speed in the ocean varies with depth. Variations in sound speed can come in the form of internal waves. Internal waves propagating up the slope of the continental shelf are subject to breaking mechanisms that result in the propagation of boluses shoreward. Internal wave boluses are three dimensional features consisting of colder, higher density water. Since the internal wave boluses are composed of colder seawater, the speed of sound is different than in the surrounding environment. The change in sound speed changes the timing and phase of propagating acoustic rays causing degradation in SAS image quality. Not only do the internal waves violate the constant sound speed assumption made by SAS for image formation, but they also influence the travel of acoustic rays due to a geometric lensing effect. The lensing effect causes large refractive effects near the top of the bolus, resulting in a bright region and shadow region within the image. The goal of this study was to quantify the effects of internal waves on SAS image resolution and subsequently model these effects. The quantification of the effects was performed utilizing point targets within the SAS image. The point spread function of the point targets was estimated and used as a proxy for the image resolution and showed that internal waves can cause resolution loss on the order of two to four times than in the absence of a bolus or sound speed error. A numerical ray tracing model was used to estimate the resolution loss in SAS imagery in the presence of internal waves. An analytical model derived in order to better characterize the impacts of internal waves on SAS resolution. Beamforming was also performed over simulated imagery in the presence and absence of internal waves. The models agreed well with each other and the observed resolution loss in collected SAS data. Based on the success of modeling attempts, it is reasonable to develop a method for full inversion for bolus parameters. Given the agreement of the models with data it may be possible to develop methods to compensate for timing errors caused by the presence of internal waves and return the ideal image resolution

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    Retrieval of Ocean Surface Currents and Winds Using Satellite SAR backscatter and Doppler frequency shift

    Get PDF
    Ocean surface winds and currents play an important role for weather, climate, marine life, ship navigation, oil spill drift and search and rescue. In-situ observations of the ocean are sparse and costly. Satellites provide a useful complement to these observations. Synthetic aperture radar (SAR) is particularly attractive due to its high spatial resolution and its capability to extract both sea surface winds and currents day and night and almost independent of weather.The work in this thesis involves processing of along-track interferometric SAR (ATI-SAR) data, analysis of the backscatter and Doppler frequency shift, and development of wind and current retrieval algorithms. Analysis of the Doppler frequency shift showed a systematic bias. A calibration method was proposed and implemented to correct for this bias. Doppler analysis also showed that the wave contribution to the SAR Doppler centroid often dominates over the current contribution. This wave contribution is estimated using existing theoretical and empirical Doppler models. For wind and current retrieval, two methods were developed and implemented.The first method, called the direct method, consists of retrieval of the wind speed from SAR backscatter using an empirical backscatter model. In order to retrieve the radial current, the retrieved wind speed is used to correct for the wave contribution. The current retrieval was assessed using two different (theoretical and empirical) Doppler models and wind inputs (model and SAR-derived). It was found that the results obtained by combining the Doppler empirical model with the SAR-derived wind speed were more consistent with ocean models.The second method, called Bayesian method, consists of blending the SAR observables (backscatter and Doppler shift) with an atmospheric and an oceanic model to retrieve the total wind and current vector fields. It was shown that this method yields more accurate estimates, i.e. reduces the models biases against in-situ measurements. Moreover, the method introduces small scale features, e.g. fronts and meandering, which are weakly resolved by the models.The correlation between the surface wind vectors and the SAR Doppler shift was demonstrated empirically using the Doppler shift estimated from over 300 TanDEM-X interferograms and ECMWF reanalysis wind vectors. Analysis of polarimetric data showed that theoretical models such as Bragg and composite surface models over-estimate the backscatter polarization ratio and Doppler shift polarization difference. A combination of a theoretical Doppler model and an empirical modulation transfer function was proposed. It was found that this model is more consistent with the analyzed data than the pure theoretical models.The results of this thesis will be useful for integrating SAR retrievals in ocean current products and assimilating SAR observables in the atmospheric, oceanic or coupled models. The results are also relevant for preparation studies of future satellite missions

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Atmospheric gravity waves in the Red Sea : a new hotspot

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Nonlinear Processes in Geophysics 18 (2011): 71-79, doi:10.5194/npg-18-71-2011.The region of the Middle East around the Red Sea (between 32° E and 44° E longitude and 12° N and 28° N latitude) is a currently undocumented hotspot for atmospheric gravity waves (AGWs). Satellite imagery shows evidence that this region is prone to relatively high occurrence of AGWs compared to other areas in the world, and reveals the spatial characteristics of these waves. The favorable conditions for wave propagation in this region are illustrated with three typical cases of AGWs propagating in the lower troposphere over the sea. Using weakly nonlinear long wave theory and the observed characteristic wavelengths we obtain phase speeds which are consistent with those observed and typical for AGWs, with the Korteweg-de Vries theory performing slightly better than Benjamin-Davis-Acrivos-Ono theory as far as phase speeds are concerned. ERS-SAR and Envisat-ASAR satellite data analysis between 1993 and 2008 reveals signatures consistent with horizontally propagating large-scale internal waves. These signatures cover the entire Red Sea and are more frequently observed between April and September, although they also occur during the rest of the year. The region's (seasonal) propagation conditions for AGWs, based upon average vertical atmospheric stratification profiles suggest that many of the signatures identified in the satellite images are atmospheric internal waves.This research was conducted with support from KAUST (King Abdullah University for Science and Technology) in collaboration with the Woods Hole Oceanographic Institution, Biology Department. Some support was also provided by a Treaty of Windsor Grant awarded by the British Council (Portugal)

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques
    corecore