16,322 research outputs found

    IMPACT: Investigation of Mobile-user Patterns Across University Campuses using WLAN Trace Analysis

    Full text link
    We conduct the most comprehensive study of WLAN traces to date. Measurements collected from four major university campuses are analyzed with the aim of developing fundamental understanding of realistic user behavior in wireless networks. Both individual user and inter-node (group) behaviors are investigated and two classes of metrics are devised to capture the underlying structure of such behaviors. For individual user behavior we observe distinct patterns in which most users are 'on' for a small fraction of the time, the number of access points visited is very small and the overall on-line user mobility is quite low. We clearly identify categories of heavy and light users. In general, users exhibit high degree of similarity over days and weeks. For group behavior, we define metrics for encounter patterns and friendship. Surprisingly, we find that a user, on average, encounters less than 6% of the network user population within a month, and that encounter and friendship relations are highly asymmetric. We establish that number of encounters follows a biPareto distribution, while friendship indexes follow an exponential distribution. We capture the encounter graph using a small world model, the characteristics of which reach steady state after only one day. We hope for our study to have a great impact on realistic modeling of network usage and mobility patterns in wireless networks.Comment: 16 pages, 31 figure

    Spatial and Social Paradigms for Interference and Coverage Analysis in Underlay D2D Network

    Get PDF
    The homogeneous Poisson point process (PPP) is widely used to model spatial distribution of base stations and mobile terminals. The same process can be used to model underlay device-to-device (D2D) network, however, neglecting homophilic relation for D2D pairing presents underestimated system insights. In this paper, we model both spatial and social distributions of interfering D2D nodes as proximity based independently marked homogeneous Poisson point process. The proximity considers physical distance between D2D nodes whereas social relationship is modeled as Zipf based marks. We apply these two paradigms to analyze the effect of interference on coverage probability of distance-proportional power-controlled cellular user. Effectively, we apply two type of functional mappings (physical distance, social marks) to Laplace functional of PPP. The resulting coverage probability has no closed-form expression, however for a subset of social marks, the mark summation converges to digamma and polygamma functions. This subset constitutes the upper and lower bounds on coverage probability. We present numerical evaluation of these bounds on coverage probability by varying number of different parameters. The results show that by imparting simple power control on cellular user, ultra-dense underlay D2D network can be realized without compromising the coverage probability of cellular user.Comment: 10 pages, 10 figure

    Efficient detection of contagious outbreaks in massive metropolitan encounter networks

    Get PDF
    Physical contact remains difficult to trace in large metropolitan networks, though it is a key vehicle for the transmission of contagious outbreaks. Co-presence encounters during daily transit use provide us with a city-scale time-resolved physical contact network, consisting of 1 billion contacts among 3 million transit users. Here, we study the advantage that knowledge of such co-presence structures may provide for early detection of contagious outbreaks. We first examine the "friend sensor" scheme --- a simple, but universal strategy requiring only local information --- and demonstrate that it provides significant early detection of simulated outbreaks. Taking advantage of the full network structure, we then identify advanced "global sensor sets", obtaining substantial early warning times savings over the friends sensor scheme. Individuals with highest number of encounters are the most efficient sensors, with performance comparable to individuals with the highest travel frequency, exploratory behavior and structural centrality. An efficiency balance emerges when testing the dependency on sensor size and evaluating sensor reliability; we find that substantial and reliable lead-time could be attained by monitoring only 0.01% of the population with the highest degree.Comment: 4 figure

    On the Security and Feasibility of Safebook: A Distributed Privacy-Preserving Online Social Network

    Get PDF
    International audienceSafebook tackles the security and privacy problems of online social networks. It puts a special emphasis on the privacy of users with respect to the application provider and provides defenses against intruders or malicious users. In order to assure privacy in the face of potential violations by the provider, Safebook is designed in a decentralized architecture. It relies on the cooperation among the independent parties that represent the users of the online social network at the same time. Safebook addresses the problem of building secure and privacypreserving data storage and communication mechanisms in a peer-topeer system by leveraging trust relationships akin to social networks in real life. This paper resumes the contributions of [7, 9, 8], and extends the first performance and security evaluation of Safebook

    Enabling Social Applications via Decentralized Social Data Management

    Full text link
    An unprecedented information wealth produced by online social networks, further augmented by location/collocation data, is currently fragmented across different proprietary services. Combined, it can accurately represent the social world and enable novel socially-aware applications. We present Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources into a multigraph managed in a decentralized fashion on user-contributed nodes, and exposes it through an interface implementing non-trivial social inferences while complying with user-defined access policies. Simulations and experiments on PlanetLab with emulated application workloads show the system exhibits good end-to-end response time, low communication overhead and resilience to malicious attacks.Comment: 27 pages, single ACM column, 9 figures, accepted in Special Issue of Foundations of Social Computing, ACM Transactions on Internet Technolog
    • …
    corecore