6 research outputs found

    On the feasibility of a channel-dependent scheduling for the SC-FDMA in 3GPP-LTE (mobile environment) based on a prioritized-bifacet Hungarian method

    Get PDF
    We propose a methodology based on the prioritization and opportunistic reuse of the optimization algorithm known as Hungarian method for the feasible implementation of a channel-dependent scheduler in the long-term evolution uplink (single carrier frequency division multiple access system). This proposal aims to offer a solution to the third generation system’s constraint of allocating only adjacent subcarriers, by providing an optimal resource allotment under a fairness scheme. A multiuser mobile environment following the third generation partnership project TS 45.005v9.3.0/25.943v9.0.0 was also implemented for evaluating the scheduler’s performance. From the results, it was possible to examine the channel frequency response for all users (four user equipments) along the whole bandwidth, to visualize the dynamic resource allocation for each of the 10,000 channel realizations considered, to generate the statistical distribution and cumulative distribution functions of the obtained global costs, as well as to evaluate the system’s performance once the proposed algorithm was embedded. Comparing and emphasizing the benefits of utilizing the proposed dynamic allotment instead of the classic static-scheduling and other existent methods.Peer ReviewedPostprint (published version

    On the feasibility of a channel-dependent scheduling for the SC-FDMA in 3GPP-LTE (mobile environment) based on a prioritized-bifacet Hungarian method

    No full text
    Abstract We propose a methodology based on the prioritization and opportunistic reuse of the optimization algorithm known as Hungarian method for the feasible implementation of a channel-dependent scheduler in the long-term evolution uplink (single carrier frequency division multiple access system). This proposal aims to offer a solution to the third generation system's constraint of allocating only adjacent subcarriers, by providing an optimal resource allotment under a fairness scheme. A multiuser mobile environment following the third generation partnership project TS 45.005v9.3.0/25.943v9.0.0 was also implemented for evaluating the scheduler's performance. From the results, it was possible to examine the channel frequency response for all users (four user equipments) along the whole bandwidth, to visualize the dynamic resource allocation for each of the 10,000 channel realizations considered, to generate the statistical distribution and cumulative distribution functions of the obtained global costs, as well as to evaluate the system's performance once the proposed algorithm was embedded. Comparing and emphasizing the benefits of utilizing the proposed dynamic allotment instead of the classic static-scheduling and other existent methods.</p

    On the feasibility of a channel-dependent scheduling for the SC-FDMA in 3GPP-LTE (mobile environment) based on a prioritized-bifacet Hungarian method

    No full text
    We propose a methodology based on the prioritization and opportunistic reuse of the optimization algorithm known as Hungarian method for the feasible implementation of a channel-dependent scheduler in the long-term evolution uplink (single carrier frequency division multiple access system). This proposal aims to offer a solution to the third generation system’s constraint of allocating only adjacent subcarriers, by providing an optimal resource allotment under a fairness scheme. A multiuser mobile environment following the third generation partnership project TS 45.005v9.3.0/25.943v9.0.0 was also implemented for evaluating the scheduler’s performance. From the results, it was possible to examine the channel frequency response for all users (four user equipments) along the whole bandwidth, to visualize the dynamic resource allocation for each of the 10,000 channel realizations considered, to generate the statistical distribution and cumulative distribution functions of the obtained global costs, as well as to evaluate the system’s performance once the proposed algorithm was embedded. Comparing and emphasizing the benefits of utilizing the proposed dynamic allotment instead of the classic static-scheduling and other existent methods.Peer Reviewe
    corecore