52,830 research outputs found

    Fast cubature of volume potentials over rectangular domains

    Get PDF
    In the present paper we study high-order cubature formulas for the computation of advection-diffusion potentials over boxes. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one dimensional integrals. For densities with separated approximation, we derive a tensor product representation of the integral operator which admits efficient cubature procedures in very high dimensions. Numerical tests show that these formulas are accurate and provide approximation of order O(h6)O(h^6) up to dimension 10810^8.Comment: 17 page

    Accurate computation of the high dimensional diffraction potential over hyper-rectangles

    Full text link
    We propose a fast method for high order approximation of potentials of the Helmholtz type operator Delta+kappa^2 over hyper-rectangles in R^n. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one-dimensional integrals with separable integrands. Then a separated representation of the density, combined with a suitable quadrature rule, leads to a tensor product representation of the integral operator. Numerical tests show that these formulas are accurate and provide approximations of order 6 up to dimension 100 and kappa^2=100

    Tensor product approximations of high dimensional potentials

    Get PDF
    The paper is devoted to the efficient computation of high-order cubature formulas for volume potentials obtained within the framework of approximate approximations. We combine this approach with modern methods of structured tensor product approximations. Instead of performing high-dimensional discrete convolutions the cubature of the potentials can be reduced to a certain number of one-dimensional convolutions leading to a considerable reduction of computing resources. We propose one-dimensional integral representions of high-order cubature formulas for n-dimensional harmonic and Yukawa potentials, which allow low rank tensor product approximations.Comment: 20 page

    Fast cubature of high dimensional biharmonic potential based on Approximate Approximations

    Full text link
    We derive new formulas for the high dimensional biharmonic potential acting on Gaussians or Gaussians times special polynomials. These formulas can be used to construct accurate cubature formulas of an arbitrary high order which are fast and effective also in very high dimensions. Numerical tests show that the formulas are accurate and provide the predicted approximation rate (O(h^8)) up to the dimension 10^7

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches
    corecore