22,359 research outputs found

    On the Logics with Propositional Quantifiers Extending S5Π

    Get PDF
    Scroggs's theorem on the extensions of S5 is an early landmark in the modern mathematical studies of modal logics. From it, we know that the lattice of normal extensions of S5 is isomorphic to the inverse order of the natural numbers with infinity and that all extensions of S5 are in fact normal. In this paper, we consider extending Scroggs's theorem to modal logics with propositional quantifiers governed by the axioms and rules analogous to the usual ones for ordinary quantifiers. We call them Π-logics. Taking S5Π, the smallest normal Π-logic extending S5, as the natural counterpart to S5 in Scroggs's theorem, we show that all normal Π-logics extending S5Π are complete with respect to their complete simple S5 algebras, that they form a lattice that is isomorphic to the lattice of the open sets of the disjoint union of two copies of the one-point compactification of N, that they have arbitrarily high Turing-degrees, and that there are non-normal Π-logics extending S5Π

    On Yangian and Long Representations of the Centrally Extended su(2|2) Superalgebra

    Get PDF
    The centrally extended su(2|2) superalgebra is an asymptotic symmetry of the light-cone string sigma model on AdS5 x S5. We consider an evaluation representation of the conventional Yangian built over a particular 16-dimensional long representation of the centrally extended su(2|2). Interestingly, we find that S-matrices compatible with this evaluation representation do not exist. On the other hand, by requiring centrally extended su(2|2) invariance and explicitly solving the Yang-Baxter equation, we find a scattering matrix for long-short representations of the Lie superalgebra. We notice that this S-matrix is invariant under a different representation of non-evaluation type, induced from the tensor product of short representations. Our findings concern the conventional Yangian only, and are not applied to possible algebraic extensions of the latter.Comment: Version accepted for publication in JHE

    The modal logic of set-theoretic potentialism and the potentialist maximality principles

    Full text link
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and L\"owe, including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism (true in all larger VβV_\beta); Grothendieck-Zermelo potentialism (true in all larger VκV_\kappa for inaccessible cardinals κ\kappa); transitive-set potentialism (true in all larger transitive sets); forcing potentialism (true in all forcing extensions); countable-transitive-model potentialism (true in all larger countable transitive models of ZFC); countable-model potentialism (true in all larger countable models of ZFC); and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account.Comment: 36 pages. Commentary can be made about this article at http://jdh.hamkins.org/set-theoretic-potentialism. Minor revisions in v2; further minor revisions in v

    Moving up and down in the generic multiverse

    Full text link
    We give a brief account of the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations "is a forcing extension of" and "is a ground model of". The fragment of the first relation is called the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is called the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.Comment: 10 pages. Extended abstract. Questions and commentary concerning this article can be made at http://jdh.hamkins.org/up-and-down-in-the-generic-multiverse
    • …
    corecore