2,448 research outputs found

    On the expressiveness of higher dimensional automata

    Get PDF
    In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata (HDA), which is the most expressive model under investigation. In particular, I propose four different translations of Petri nets, corresponding to the four different computational interpretations of nets found in the literature. I also extend various equivalence relations for concurrent systems to HDA. These include the history preserving bisimulation, which is the coarsest equivalence that fully respects branching time, causality and their interplay, as well as the ST-bisimulation, a branching time respecting equivalence that takes causality into account to the extent that it is expressible by actions overlapping in time. Through their embeddings in HDA, it is now well-defined whether members of different models of concurrency are equivalent. (c) 2006 Elsevier B.V. All rights reserved

    On the Expressiveness of Higher Dimensional Automata: (Extended Abstract)

    Get PDF
    In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata, which is the most expressive model under investigation. In particular, I propose four different translations of Petri nets, corresponding to the four different computational interpretations of nets found in the literature.I also extend various equivalence relations for concurrent systems to higher dimensional automata. These include the history preserving bisimulation, which is the coarsest equivalence that fully respects branching time, causality and their interplay, as well as the ST-bisimulation, a branching time respecting equivalence that takes causality into account to the extent that it is expressible by actions overlapping in time. Through their embeddings in higher dimensional automata, it is now well-defined whether members of different models of concurrency are equivalent

    The Glory of the Past and Geometrical Concurrency

    Get PDF
    This paper contributes to the general understanding of the geometrical model of concurrency that was named higher dimensional automata (HDAs) by Pratt. In particular we investigate modal logics for such models and their expressive power in terms of the bisimulation that can be captured. The geometric model of concurrency is interesting from two main reasons: its generality and expressiveness, and the natural way in which autoconcurrency and action refinement are captured. Logics for this model, though, are not well investigated, where a simple, yet adequate, modal logic over HDAs was only recently introduced. As this modal logic, with two existential modalities, during and after, captures only split bisimulation, which is rather low in the spectrum of van Glabbeek and Vaandrager, the immediate question was what small extension of this logic could capture the more fine-grained hereditary history preserving bisimulation (hh)? In response, the work in this paper provides several insights. One is the fact that the geometrical aspect of HDAs makes it possible to use for capturing the hh-bisimulation, a standard modal logic that does not employ event variables, opposed to the two logics (over less expressive models) that we compare with. The logic that we investigate here uses standard past modalities and extends the previously introduced logic (called HDML) that had only forward, action-labelled, modalities. Besides, we try to understand better the above issues by introducing a related model that we call ST-configuration structures, which extend the configuration structures of van Glabbeek and Plotkin. We relate this model to HDAs, and redefine and prove the earlier results in the light of this new model. These offer a different view on why the past modalities and geometrical concurrency capture the hereditary history preserving bisimulation. Additional correlating insights are also gained.Comment: 17 pages, 7 figure

    Phenomenology of retained refractoriness: On semi-memristive discrete media

    Full text link
    We study two-dimensional cellular automata, each cell takes three states: resting, excited and refractory. A resting cell excites if number of excited neighbours lies in a certain interval (excitation interval). An excited cell become refractory independently on states of its neighbours. A refractory cell returns to a resting state only if the number of excited neighbours belong to recovery interval. The model is an excitable cellular automaton abstraction of a spatially extended semi-memristive medium where a cell's resting state symbolises low-resistance and refractory state high-resistance. The medium is semi-memristive because only transition from high- to low-resistance is controlled by density of local excitation. We present phenomenological classification of the automata behaviour for all possible excitation intervals and recovery intervals. We describe eleven classes of cellular automata with retained refractoriness based on criteria of space-filling ratio, morphological and generative diversity, and types of travelling localisations

    History-Register Automata

    Get PDF
    Programs with dynamic allocation are able to create and use an unbounded number of fresh resources, such as references, objects, files, etc. We propose History-Register Automata (HRA), a new automata-theoretic formalism for modelling such programs. HRAs extend the expressiveness of previous approaches and bring us to the limits of decidability for reachability checks. The distinctive feature of our machines is their use of unbounded memory sets (histories) where input symbols can be selectively stored and compared with symbols to follow. In addition, stored symbols can be consumed or deleted by reset. We show that the combination of consumption and reset capabilities renders the automata powerful enough to imitate counter machines, and yields closure under all regular operations apart from complementation. We moreover examine weaker notions of HRAs which strike different balances between expressiveness and effectiveness.Comment: LMCS (improved version of FoSSaCS
    • …
    corecore