2,303 research outputs found

    On the existence of optimal affine methods for approximating linear functionals

    Get PDF
    AbstractThe existence of an optimal affine method using linear information is established for the approximation of a linear functional on a convex set. This is a generalization of a result of S. A. Smolyak (“On Optimal Restoration of Functions and Functionals of Them,” Candidate Dissertation, Moscow State University, 1965)

    Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

    Full text link
    We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted p\ell_p-spaces for 0<p10<p\leq 1. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the L2L_2, resp. LL_\infty convergence rates afforded by best ss-term approximations of the parametric solution up to logarithmic factors.Comment: revised version, 27 page

    Approximating gradients with continuous piecewise polynomial functions

    Get PDF
    Motivated by conforming finite element methods for elliptic problems of second order, we analyze the approximation of the gradient of a target function by continuous piecewise polynomial functions over a simplicial mesh. The main result is that the global best approximation error is equivalent to an appropriate sum in terms of the local best approximations errors on elements. Thus, requiring continuity does not downgrade local approximability and discontinuous piecewise polynomials essentially do not offer additional approximation power, even for a fixed mesh. This result implies error bounds in terms of piecewise regularity over the whole admissible smoothness range. Moreover, it allows for simple local error functionals in adaptive tree approximation of gradients.Comment: 21 pages, 1 figur

    Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems

    Full text link
    A new class of non-homogeneous state-affine systems is introduced for use in reservoir computing. Sufficient conditions are identified that guarantee first, that the associated reservoir computers with linear readouts are causal, time-invariant, and satisfy the fading memory property and second, that a subset of this class is universal in the category of fading memory filters with stochastic almost surely uniformly bounded inputs. This means that any discrete-time filter that satisfies the fading memory property with random inputs of that type can be uniformly approximated by elements in the non-homogeneous state-affine family.Comment: 41 page

    A Variational Approach to Particles in Lipid Membranes

    Get PDF
    A variety of models for the membrane-mediated interaction of particles in lipid membranes, mostly well-established in theoretical physics, is reviewed from a mathematical perspective. We provide mathematically consistent formulations in a variational framework, relate apparently different modelling approaches in terms of successive approximation, and investigate existence and uniqueness. Numerical computations illustrate that the new variational formulations are directly accessible to effective numerical methods
    corecore