1,887 research outputs found

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    An expressive completeness theorem for coalgebraic modal mu-calculi

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the "game functor"). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0721

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution

    A Proof of Kamp's theorem

    Full text link
    We provide a simple proof of Kamp's theorem

    Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. Similar to well-known results for monadic second-order logic over trees, we provide a translation of this logic into a class of automata, relative to the class of coalgebras that admit a tree-like supporting Kripke frame. We then consider invariance under behavioral equivalence of formulas; more in particular, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of monadic second-order logic. Building on recent results by the third author we show that in order to provide such a coalgebraic generalization of the Janin-Walukiewicz Theorem, it suffices to find what we call an adequate uniform construction for the functor. As applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors. Finally, we consider in some detail the monotone neighborhood functor, which provides coalgebraic semantics for monotone modal logic. It turns out that there is no adequate uniform construction for this functor, whence the automata-theoretic approach towards bisimulation invariance does not apply directly. This problem can be overcome if we consider global bisimulations between neighborhood models: one of our main technical results provides a characterization of the monotone modal mu-calculus extended with the global modalities, as the fragment of monadic second-order logic for the monotone neighborhood functor that is invariant for global bisimulations

    Title redacted for blind review

    Get PDF
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the axioms of a dynamic provability logic, which embeds GL within the modal μ\mu-calculus. Via correspondence results between modal logic and the bisimulation-invariant fragment of second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the notion of 'intuition-that'. I argue that intuition-that can further be shown to entrain conceptual elucidation, by way of figuring as a dynamic-interpretational modality which induces the reinterpretation of both domains of quantification and the intensions and hyperintensions of mathematical concepts that are formalizable in monadic first- and second-order formal languages. Hyperintensionality is countenanced via four models, without a decision as to which model is to be preferred. The first model makes intuition sensitive to hyperintensional topics, i.e. subject matters. The second model is a hyperintensional truthmaker semantics, in particular a novel epistemic two-dimensional truthmaker semantics. The third model is a topic-sensitive non-truthmaker epistemic two-dimensional semantics. The fourth model is a topic-sensitive epistemic two-dimensional truthmaker semantics

    Abstracta and Possibilia: Modal Foundations of Mathematical Platonism

    Get PDF
    This paper aims to provide modal foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by Hale and Wright and examined in Hale (2013); and demonstrate how a two-dimensional approach to the epistemology of mathematics is consistent with Hale and Wright's notion of there being non-evidential epistemic entitlement rationally to trust that abstraction principles are true. A choice point that I flag is that between availing of intensional or hyperintensional semantics. The hyperintensional semantic approach that I advance is a topic-sensitive epistemic two-dimensional truthmaker semantics. Epistemic and metaphysical states and possibilities may thus be shown to play a constitutive role in vindicating the reality of mathematical objects and truth, and in providing a conceivability-based route to the truth of abstraction principles as well as other axioms and propositions in mathematics

    Non-Transitive Self-Knowledge: Luminosity via Modal μ-Automata

    Get PDF
    This essay provides a novel account of iterated epistemic states. The essay argues that states of epistemic determinacy might be secured by countenancing self-knowledge on the model of fixed points in monadic second-order modal logic, i.e. the modal μ\mu-calculus. Despite the epistemic indeterminacy witnessed by the invalidation of modal axiom 4 in the sorites paradox -- i.e. the KK principle: □\squareϕ\phi →\rightarrow □\square□\squareϕ\phi -- an epistemic interpretation of a μ\mu-automaton permits fixed points to entrain a principled means by which to account for necessary conditions on self-knowledge
    • …
    corecore