2 research outputs found

    Equalization of CPM signals over doubly-selective aeronautical channels

    Get PDF
    Communication technologies have always been one of the fundamental milestones of the aeronautical environment. Despite the growing demand for high performances, the aviation context is reluctant to move towards new technologies. Common communication strategies are not suitable to transmit at very high data rates over time- and/or frequency-dispersive (i.e., doubly-selective) air-ground channels, therefore, new requirements have to be fulfilled by an incremental approach, that is, by updating some parts of the legacy systems. This thesis deals with receiver synthesis for aeronautical communication data-links employing continuous-phase modulated (CPM) signals over doubly-selective wireless communication channels. The goal is to design efficient and low-complexity time-varying equalizers, by exploiting all of the CPM signal features, in order to compensate for the effects due to the rapidly time-varying aeronautical channels. The application of the basis expansion model (BEM) to a typical aeronautical communication channel is considered and validated by computer simulations. The second-order statistical characterization of the pseudo-symbols arising from Laurent representation of CPM signals is introduced and discussed. Both linear time-varying (LTV) and widely-linear time-varying (WLTV) zero forcing (ZF) and minimum mean square error (MMSE) receiver structures for CPM signals operating over doubly-selective channels are proposed and implemented by using the BEM model for the channel. Monte Carlo simulation results, carried out in typical aeronautical scenarios, show that the proposed approaches are able to work satisfactorily also over rapidly time-varying channels
    corecore